Một chiếc thuyền chuyển động trên đoạn đường \(AB\) dài \(60km\). Vận tốc của thuyền là \(15km/h\) so với dòng nước yên lặng. Tính vận tốc dòng chảy của nước biết thời gian để thuyền đi từ \(A\) đến \(B\) rồi quay lại \(A\) là \(9\) tiếng?
-
A.
\(5km/h\)
-
B.
\(9km/h\)
-
C.
\(12km/h\)
-
D.
\(15km/h\)
Xác định các thông số:
+ Số 1: gắn với vật cần tính vận tốc
+ Số 2: gắn với hệ quy chiếu là các vật chuyển động
+ Số 3: gắn với hệ quy chiếu là các vật đứng yên
+ \({v_{12}}\): vận tốc của vật so với hệ quy chiếu chuyển động
+ \({v_{23}}\): vận tốc của hệ quy chiếu chuyển động so với hệ quy chiếu đứng yên
+ \({v_{13}}\): vận tốc của vật so với hệ quy chiếu chuyển động
- Vận dụng công thức cộng vận tốc: \(\overrightarrow {{v_{13}}} = \overrightarrow {{v_{12}}} + \overrightarrow {{v_{23}}} \)
- Vận dụng biểu thức: \(S = vt\)
Ta có:
+ Thuyền (1)
+ Dòng nước (2)
+ Bờ sông (3)
+ Vận tốc của thuyền (1) so với dòng nước (2): \({v_{12}} = 15km/h\)
+ Vận tốc của dòng nước (2) so với bờ (3): \({v_{23}}\)
+ Vận tốc của thuyền (1) so với bờ (2): \({v_{13}}\)
- Khi thuyền đi xuôi dòng: \({v_{13}} = {v_{12}} + {v_{23}}\)
Khi thuyền đi ngược dòng: \(v{'_{13}} = {v_{12}} - {v_{23}}\)
- Gọi \({t_1},{t_2}\) lần lượt là thời gian đi và về của thuyền, ta có:
\(\left\{ \begin{array}{l}{t_1} = \frac{{AB}}{{{v_{13}}}} = \frac{{AB}}{{{v_{12}} + {v_{23}}}}\\{t_2} = \frac{{AB}}{{v{'_{13}}}} = \frac{{AB}}{{{v_{12}} - {v_{23}}}}\end{array} \right.\)
Theo đầu bài, ta có:
\(\begin{array}{l}{t_1} + {t_2} = 9 \to \frac{{AB}}{{{v_{12}} + {v_{23}}}} + \frac{{AB}}{{{v_{12}} - {v_{23}}}} = 9\\ \leftrightarrow \frac{{60}}{{15 + {v_{23}}}} + \frac{{60}}{{15 - {v_{23}}}} = 9\\ \leftrightarrow 60\left( {15 - {v_{23}}} \right) + 60\left( {15 + {v_{23}}} \right) = 9\left( {{{15}^2} - v_{23}^2} \right)\\ \to {v_{23}} = 5km/h\end{array}\)
Đáp án : A




Danh sách bình luận