Đề bài

Tính đạo hàm của hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right)\) tại điểm \(x = 0\).

  • A.
    \(f'\left( 0 \right) = 0.\)         
  • B.
     \(f'\left( 0 \right) =  - 2018!.\)                                                    
  • C.
     \(f'\left( 0 \right) = 2018!.\)                                                        
  • D.
     \(f'\left( 0 \right) = 2018.\)
Phương pháp giải

\(\left( {f.g} \right)' = f'.g + f.g'\)

Lời giải của GV Loigiaihay.com

\(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right)\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) = 1.\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right) + x.1.\left( {x - 2} \right)...\left( {x - 2018} \right) + x\left( {x - 1} \right).1.\left( {x - 2} \right)...\left( {x - 2018} \right) + ... + \\x.\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2017} \right).1\end{array}\)

\( \Rightarrow f'\left( 0 \right) = 1.\left( { - 1} \right)\left( { - 2} \right)...\left( { - 2018} \right) + 0 + 0 + ... + 0 = 1.2...2018 .(-1)^{2018}= 2018!\).

Đáp án : C