Đề bài

Cho hàm số \(y = \dfrac{1}{3}{x^3} - \dfrac{m}{2}{x^2} + mx + 5\). Tìm tất cả các giá trị của tham số m để \(y' \ge 0,\forall x \in \mathbb{R}\).

  • A.

    \(m < 0\) hoặc \(m > 4\)

  • B.

    \(0 < m < 4\)

  • C.

    \(0 \le m \le 4\)

  • D.

    \(m \le 0\) hoặc \(m \ge 4\).

Phương pháp giải

Bước 1: Tính y’

Bước 2: Tìm m.

Tam thức bậc hai \(a{x^2} + bx + c \le 0\forall x \in \mathbb{R}\)\( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\forall x \in \mathbb{R}\)

Lời giải của GV Loigiaihay.com

Bước 1:

\(y' = {x^2} - mx + m\)

Bước 2:

\(\begin{array}{l}y' \ge 0,\forall x \in \mathbb{R}\\ \Leftrightarrow {x^2} - mx + m \ge 0\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\Delta  \le 0\end{array} \right.\forall x \in \mathbb{R}\\ \Leftrightarrow {m^2} - 4m \le 0 \Leftrightarrow 0 \le m \le 4\end{array}\)

Đáp án : C