Cho hàm số \(y = \dfrac{{x - 1}}{{2x - 3}}\) có đồ thị \((C)\). Viết phương trình tiếp tuyến của \((C)\) tại \(M\) thuộc (C) sao cho tiếp tuyến đó tạo với hai trục tọa độ một tam giác vuông cân.
-
A.
\(y = x - 3\)
-
B.
\(y = x - 3\) hoặc \(y = - x + 1\)
-
C.
\(y = - x + 3\) hoặc \(y = 1 - x\)
-
D.
\(y = - x + 1\)
Bước 1: Gọi điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\).
Bước 2: Tính \(f'\left( x \right)\)
Bước 3: Tìm \({x_0}\) dựa vào kết quả sau
Đường thẳng tạo với 2 trục tọa độ tam giác vuông cân khi hệ số góc thỏa mãn \(\left| k \right| = 1\)
Bước 4: Thay các giá trị của \({x_0}\) vừa tìm được để tìm tiếp tuyến tương ứng.
Bước 1:
Gọi điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là tiếp điểm của tiếp tuyến tại M. Tiếp tuyến tại M có hệ số góc là \(f'\left( {{x_0}} \right)\).
Bước 2:
\(\begin{array}{l}f'\left( x \right) = \dfrac{{1.\left( {2x - 3} \right) - 2\left( {x - 1} \right)}}{{{{\left( {2x - 3} \right)}^2}}}\\ = \dfrac{{ - 1}}{{{{\left( {2x - 3} \right)}^2}}}\end{array}\)
Bước 3:
Đường thẳng tạo với 2 trục tọa độ tam giác vuông cân khi hệ số góc thỏa mãn \(\left| k \right| = 1\)
\( \Rightarrow \left| {f'\left( {{x_0}} \right)} \right| = 1\)
\(\begin{array}{l} \Leftrightarrow \dfrac{1}{{{{\left( {2{x_0} - 3} \right)}^2}}} = 1\\ \Leftrightarrow \left| {2{x_0} - 3} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = 1\end{array} \right.\end{array}\)
Bước 4:
\({x_0} = 2 \Rightarrow f'\left( {{x_0}} \right) = - 1;f\left( {{x_0}} \right) = 1\).
Tiếp tuyến: \(y = - \left( {x - 2} \right) + 1 = - x + 3\)
\({x_0} = 1 \Rightarrow f'\left( {{x_0}} \right) = - 1;f\left( {{x_0}} \right) = 0\)
Tiếp tuyến: \(y = - \left( {x - 1} \right) = - x + 1\)
Vậy tiếp tuyến cần tìm là \(y = - x + 3\) và \(y = 1 - x\)
Đáp án : C
Các bài tập cùng chuyên đề
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là
Phương trình tiếp tuyến của đường cong \(\left( C \right):\,\,y = {x^3} - 2x + 3\) tại điểm \(M\left( {1;2} \right)\) là:
Tiếp tuyến của đường cong \(\left( C \right):\,\,y = x\sqrt x \) tại điểm \(M\left( {1;1} \right)\) có phương trình là:
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) tại điểm có hoành độ bằng $2$ có hệ số góc \(k = ?\)
Tiếp tuyến của đồ thị hàm số hàm số \(y = 2{x^3} + 3{x^2}\) tại điểm có tung độ bằng $5$ có phương trình là?
Cho hàm số \(y = - {x^3} + 3x - 2\) có đồ thị \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình:
Viết phương trình tiếp tuyến $d$ của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm có hoành độ \({x_0}\) thỏa mãn \(f''\left( {{x_0}} \right) = 0?\)
Tiếp tuyến tại điểm \(M\left( {1;3} \right)\) cắt đồ thị hàm số \(y = {x^3} - x + 3\) tại điểm thứ hai khác $M$ là $N$. Tọa độ điểm $N$ là:
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 2}}{{x + 1}}\) tại giao điểm với trục tung cắt trục hoành tại điểm có hoành độ là?
Cho hàm số \(y = \dfrac{{{x^2}}}{4} - x + 1\) có đồ thị \(\left( C \right)\). Từ điểm \(M\left( {2; - 1} \right)\) có thể kẻ đến \(\left( C \right)\) hai tiếp tuyến phân biệt, hai tiếp tuyến này có phương trình là?
Cho hàm số \(y = {x^3} - 6{x^2} + 9x\) có đồ thị \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) song song với \(d:\,y = 9x\) có phương trình là:
Gọi \(\left( C \right)\) là đồ thị hàm số \(y = {x^4} + x\). Tiếp tuyến của \(\left( C \right)\) vuông góc với \(d:\,\,x + 5y = 0\) có phương trình là:
Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
Số tiếp tuyến của đồ thị hàm số \(y = \dfrac{1}{3}{x^3} - 2{x^2} + 3x + 1\) song song với đường thẳng \(y = 8x + 2\) là:
Đường thẳng nào sau đây là tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) và có hệ số góc nhỏ nhất?
Cho hàm số \(y = \dfrac{{a{x^2} - bx}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Để \(\left( C \right)\) đi qua điểm \(A\left( { - 1;\dfrac{5}{2}} \right)\) và tiếp tuyến của \(\left( C \right)\) tại gốc tọa độ có hệ số góc \(k = - 3\) thì mỗi liên hệ giữa $a$ và $b$ là :
Cho hàm số \(y = {x^4} - 2{m^2}{x^2} + 2m + 1\) và có đồ thị \({C_m}\). Tập tất cả các giá trị của tham số m để tiếp tuyến của đồ thị \(\left( {{C_m}} \right)\) tại giao điểm của \(\left( {{C_m}} \right)\) với đường thẳng \(d:\,\,x = 1\) song song với đường thẳng \(y = - 12x + 4\) là :
Cho đồ thị hàm số $\left( C \right):\,\,y = \dfrac{{x + 1}}{{x - 2}}$ và đường thẳng \(d:\,\,y = x + m\). Khi đường thẳng cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt và tiếp tuyến với \(\left( C \right)\) tại hai điểm này song song với nhau thì $m$ sẽ thuộc khoảng nào sau đây ?
Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị \(\left( C \right)\). Gọi d là tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1;5} \right)\) và $B$ là giao điểm thứ hai của $d$ với \(\left( C \right)\). Tính diện tích tam giác $OAB$?
Cho hàm số \(y = \dfrac{{x + 2}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Gọi $d$ là khoảng cách từ điểm \(A\left( {1;1} \right)\) đến một tiếp tuyến bất kỳ của đồ thị \(\left( C \right)\). Tìm giá trị lớn nhất của $d$?