Cho hình lập phương \(ABCD,{A^\prime }{B^\prime }{C^\prime }{D^\prime }\) có cạnh bằng 3a. Khoảng cách từ \({A^\prime }\) đến mặt phẳng \((ABCD)\) bằng
-
A.
\(a\)
-
B.
$2a$
-
C.
\(\dfrac{a}{2}\).
-
D.
$3a$
Cạnh bên hình lập phương vuông góc với 2 đáy.
Ta có \(A'A \bot \left( {ABCD} \right) \Rightarrow d\left( {A',\left( {ABCD} \right)} \right) = A'A\)$=3a$.
Đáp án : D
Các bài tập cùng chuyên đề
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác cạnh $BC = a,\,\,AC = 2a\sqrt 2 $, góc $\widehat {ACB} = {45^0}$. Cạnh bên $SB$ vuông góc với mặt phẳng $(ABC).$ Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBC).$
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có $AB = a\sqrt 2 $. Cạnh bên \(SA = 2a\) và vuông góc với mặt đáy \(\left( {ABCD} \right)\). Tính khoảng cách \(d\) từ \(D\) đến mặt phẳng \(\left( {SBC} \right)\).
Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\) và \(B\), \(AD = a,\) \(AB = 2a,\) \(BC = 3a,\) \(SA = 2a\), \(H\) là trung điểm cạnh \(AB\), \(SH\) là đường cao của hình chóp \(S.ABCD\). Tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SCD} \right)\).
Cho hình chóp $S.ABCD$ có đáy \(ABCD\) là hình vuông cạnh bằng $a$. Cạnh bên $SA$ vuông góc với đáy, $SB$ hợp với mặt đáy một góc $60^\circ $. Tính khoảng cách \(d\) từ điểm $D$ đến mặt phẳng $\left( {SBC} \right)$.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh \(a.\) Cạnh bên \(SA = \dfrac{{a\sqrt {15} }}{2}\) và vuông góc với mặt đáy \(\left( {ABCD} \right).\) Tính khoảng cách \(d\) từ \(O\) đến mặt phẳng \(\left( {SBC} \right).\)
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, $SA$ vuông góc với mặt phẳng $\left( {ABC} \right)$; góc giữa đường thẳng $SB$ và mặt phẳng $\left( {ABC} \right)$ bằng ${60^0}$. Gọi $M$ là trung điểm của cạnh $AB$. Tính khoảng cách \(d\) từ $B$ đến mặt phẳng $\left( {SMC} \right)$.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên $SA = a\sqrt 3 $ và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB = a,{\rm{ }}AC = a\sqrt 3 $. Tam giác $SBC$ đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách $d$ từ $B$ đến mặt phẳng $\left( {SAC} \right)$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, các cạnh bên của hình chóp bằng nhau và bằng $2a$. Tính khoảng cách $d$ từ $A$ đến mặt phẳng $\left( SCD \right)$
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh bằng $1$. Tam giác $SAB$ đều và nằm trong mặt phẳng vuông góc với đáy $\left( {ABCD} \right)$. Tính khoảng cách $d$ từ $A$ đến $\left( {SCD} \right)$.
Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $1$, cạnh bên hợp với mặt đáy một góc ${60^0}$. Tính khoảng cách \(d\) từ $O$ đến mặt phẳng $\left( {SBC} \right)$.
Cho hình chóp \(S.ACBD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\). Cạnh bên \(SA\) vuông góc với đáy, \(SA = AB = BC = 1\), \(AD = 2\). Tính khoảng cách \(d\) từ điểm \(A\) đến mặt phẳng \(\left( {SBD} \right)\).
Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$ và cạnh bên bằng $\dfrac{{a\sqrt {21} }}{6}$. Tính khoảng cách \(d\) từ đỉnh $A$ đến mặt phẳng $\left( {SBC} \right)$ .
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\), $AD = 2BC,$ $AB = BC = a\sqrt 3 $. Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Gọi \(E\) là trung điểm của cạnh \(SC\). Tính khoảng cách \(d\) từ điểm \(E\) đến mặt phẳng \(\left( {SAD} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a,{\rm{ }}AD = 2a\). Cạnh bên \(SA\) vuông góc với đáy, góc giữa \(SD\) với đáy bằng \({60^0}.\) Tính khoảng cách \(d\) từ điểm \(C\) đến mặt phẳng \(\left( {SBD} \right)\) theo \(a\).
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AC = 2a,{\rm{ }}BC = a$. Đỉnh $S$ cách
đều các điểm $A,{\rm{ }}B,{\rm{ }}C$. Tính khoảng cách \(d\) từ trung điểm $M$ của $SC$ đến mặt phẳng $\left( {SBD} \right)$.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\). Tam giác \(ABC\) đều, hình chiếu vuông góc \(H\) của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm của tam giác \(ABC\). Đường thẳng \(SD\) hợp với mặt phẳng \(\left( {ABCD} \right)\) góc \({30^0}\). Tính khoảng cách \(d\) từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\) theo \(a\).
Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình vuông cạnh $a$. Hình chiếu vuông góc của $S$ trên mặt phẳng $\left( {ABCD} \right)$ là điểm $H$ trùng với trung điểm của $AB$, biết $SH = a\sqrt 3 $. Gọi $M$ là giao điểm của $HD$ và $AC$. Tính khoảng cách từ điểm $M$ đến mặt phẳng $\left( {SCD} \right)$.
Cho hình chóp $S.ABCD$, có đáy $ABCD$ là hình chữ nhật. Cạnh bên $SA$ vuông góc với đáy, $SA = AB = a$ và $AD = x.a$. Gọi $E$ là trung điểm của $SC$. Tìm $x$, biết khoảng cách từ điểm $E$ đến mặt phẳng $\left( {SBD} \right)$ bằng $h = \dfrac{a}{3}$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $BC = a$. Cạnh bên $SA$ vuông góc với đáy, góc $\widehat {SCA} = \widehat {BSC} = {30^0}$. Gọi $M$ là trung điểm của $CD$. Tính khoảng cách từ $D$ đến mặt phẳng $\left( {SAM} \right)$.