Đề bài

Một con lắc lò xo dao động với phương trình $x = 6c{\text{os}}\left( {20\pi t } \right)cm$. Xác định chu kỳ, tần số dao động của chất điểm.   

  • A.

    $f =10Hz; T= 0,1s$

  • B.

    $f =1Hz; T= 1s$

  • C.

    $f =100Hz; T= 0,01s$

  • D.

    $f =5Hz; T= 0,2s$

Phương pháp giải

Sử dụng công thức xác đinh chu kỳ, tần số dao động điều hòa: $\omega  = \dfrac{{2\pi }}{T} = 2\pi f$

Lời giải của GV Loigiaihay.com

Ta có: $\omega  = \frac{{2\pi }}{T} = 2\pi f \to \left\{ \begin{gathered}T = \frac{{2\pi }}{\omega } \hfill \\f = \frac{\omega }{{2\pi }} \hfill \\\end{gathered}  \right.$

Từ phương trình, ta có: $ω=20π$, thay vào công thức trên => $\left\{ \begin{gathered}T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{20\pi }} = 0,1{\text{s}} \hfill \\f = \frac{\omega }{{2\pi }} = \frac{1}{T} = 10H{\text{z}} \hfill \\\end{gathered}  \right.$

Đáp án : A