Đề bài

Đề thi THPT QG – 2021 lần 1– mã 104

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{2^{{x^2}}} - {4^x}} \right)\left[ {{{\log }_3}\left( {x + 25} \right) - 3} \right] \le 0\)?

  • A.
    \(24\)
  • B.
    vô số
  • C.
    \(25\)
  • D.
    \(26\)
Phương pháp giải

Tích của hai biểu thức \( \le 0\) nên hai biểu thức trái dấu, ta chia hai trường hợp.

Từ mỗi trường hợp ta giải ra các giá trị \(x\)

Đối chiếu với điều kiện xác định.

Lời giải của GV Loigiaihay.com

Điều kiện xác định \(x >  - 25\)

TH1: \(\left\{ \begin{array}{l}{2^{{x^2}}} - {4^x} \le 0\\{\log _3}\left( {x + 25} \right) - 3 \ge 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{2^{{x^2}}} \le {4^x}\\{\log _3}\left( {x + 25} \right) \ge 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} \le 2x\\x + 25 \ge 27\end{array} \right. \Rightarrow \left\{ \begin{array}{l}0 \le x \le 2\\x \ge 2\end{array} \right. \Rightarrow x = 2\)

TH2: \(\left\{ \begin{array}{l}{2^{{x^2}}} - {4^x} \ge 0\\{\log _3}\left( {x + 25} \right) - 3 \le 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{2^{{x^2}}} \ge {4^x}\\x + 25 \le {3^3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} \ge 2x\\x \le 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \le 0\\x \ge 2\end{array} \right.\\x \le 2\end{array} \right.\)

Kết hợp với điều kiện \(x >  - 25\) ta có \(x \in \left\{ { - 24; - 23;...;0} \right\}\) => Có 25 giá trị

Vậy từ 2 trường hợp trên ta có 26 giá trị của $x$ thỏa mãn bài toán.

Đáp án : D