Đề bài

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{2^{{x^2}}} - {4^x}} \right)\left[ {{{\log }_2}\left( {x + 14} \right) - 4} \right] \le 0\)?

  • A.
    \(14\)
  • B.
     \(13\)
  • C.
    Vô số
  • D.
    \(15\)
Phương pháp giải

Chia các TH và giải bất phương trình.

Lời giải của GV Loigiaihay.com

BPT: \(\left( {{2^{{x^2}}} - {4^x}} \right)\left[ {{{\log }_2}\left( {x + 14} \right) - 4} \right] \le 0\).

Bài này ta chia 2 trường hợp để giải.

TH1:

\(\begin{array}{l}\left\{ \begin{array}{l}{2^{{x^2}}} - {4^x} \ge 0\\{\log _2}\left( {x + 14} \right) - 4 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{2^{{x^2}}} \ge {2^{2x}}\\{\log _2}\left( {x + 14} \right) \le 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} \ge 2x\\0 < x + 14 \le {2^4}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \le 0\\x \ge 2\end{array} \right.\\ - 14 < x \le 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 14 < x \le 0\\x = 2\end{array} \right.\end{array}\)

\( \Rightarrow \) Trường hợp này có 15 giá trị nguyên \(x \in \left\{ { - 13; - 12; - 11;...;0;2} \right\}\).

TH2:

\(\begin{array}{l}\left\{ \begin{array}{l}{2^{{x^2}}} - {2^x} \le 0\\{\log _2}\left( {x + 14} \right) - 4 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{2^{{x^2}}} \le {2^{2x}}\\{\log _2}\left( {x + 14} \right) \ge 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} \le 2x\\x + 14 \ge 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 2\\x \ge 2\end{array} \right. \Leftrightarrow x = 2\end{array}\)

\( \Rightarrow \) Trường hợp này có 1 nghiệm nguyên \(x\) thuộc trường hợp 1.

Vậy có tất cả 15 nghiệm nguyên \(x\) thỏa mãn bất phương trình.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Bất phương trình  \(\log_{{\frac{4}{{25}}}}(x + 1) \ge \log_{{\frac{2}{5}}}x\) tương đương với bất phương trình nào dưới đây?

Xem lời giải >>
Bài 2 :

Giải bất phương trình $\log_{2}\left( {3x-1} \right) \ge 3$.

Xem lời giải >>
Bài 3 :

Giải bất phương trình \({\log _{\frac{1}{3}}}(x + {9^{500}}) >  - 1000\)

Xem lời giải >>
Bài 4 :

Số nguyên nhỏ nhất thỏa mãn $\log_{2}\left( {5x-3} \right) > 5$ là:

Xem lời giải >>
Bài 5 :

Tìm tập nghiệm \(S\) của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right)\).

Xem lời giải >>
Bài 6 :

Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\) nghiệm đúng với mọi giá trị \(x \in \left[ {1;64} \right]\).

Xem lời giải >>
Bài 7 :

Tập nghiệm của bất phương trình $\ln\left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0$ là:

Xem lời giải >>
Bài 8 :

Tập nghiệm của bất phương trình $\log\left( {{x^2} + 25} \right) > \log\left( {10x} \right)$ là:

Xem lời giải >>
Bài 9 :

Tập nghiệm của bất phương trình $({2^{{x^2} - 4}} - 1).\ln {x^2} < 0$ là:

Xem lời giải >>
Bài 10 :

Tập hợp nghiệm của bất phương trình ${\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)$ là:

Xem lời giải >>
Bài 11 :

Nghiệm của bất phương trình ${\log _2}(x + 1) + {\log _{\frac{1}{2}}}\sqrt {x + 1}  \le 0$ là :

Xem lời giải >>
Bài 12 :

Giải bất phương trình \({\log _{0,7}}\left( {{{\log }_6}\dfrac{{{x^2} + x}}{{x + 4}}} \right) < 0\)

Xem lời giải >>
Bài 13 :

Tìm tập hợp nghiệm $S$ của bất phương trình: \({\log _{\frac{\pi }{4}}}({x^2} + 1) < {\log _{\frac{\pi }{4}}}(2x + 4)\)

Xem lời giải >>
Bài 14 :

Giải bất phương trình \({\log _3}({2^x} - 3) < 0\)

Xem lời giải >>
Bài 15 :

Với \(m\) là tham số thực dương khác $1$. Hãy tìm tập nghiệm \(S\) của bất phương trình

\({\log _m}(2{x^2} + x + 3) \le {\log _m}(3{x^2} - x)\). Biết rằng  \(x = 1\) là một nghiệm của bất phương trình.

Xem lời giải >>
Bài 16 :

Xác định tập nghiệm $S$ của bất phương trình $\ln{x^2} > \ln\left( {4x - 4} \right)$

Xem lời giải >>
Bài 17 :

Tìm tập nghiệm $S$ của bất phương trình ${\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}(x) > {\log _2}({x^2} - x) - 1$

Xem lời giải >>
Bài 18 :

Tập nghiệm của phương trình \({\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\) là

Xem lời giải >>
Bài 19 :

Giải bất phương trình: $\log _2^2x - 4033{\log _2}x + 4066272 \le 0$ .

Xem lời giải >>
Bài 20 :

Tập nghiệm của bất phương trình ${\log _3}x \le {\log _{\frac{1}{3}}}(2x)$ là nửa khoảng $(a;b{\rm{]}}$. Giá trị của ${a^2} + {b^2}$ bằng

Xem lời giải >>