Đề bài

Một tấm nhôm mỏng, trên có rạch hai khe hẹp song song \({S_1}\)  và \({S_2}\) và đặt cách một màn 1,2 m. Đặt giữa màn và hai khe một thấu kính hội tụ có tiêu cự \(\frac{{80}}{3}cm\), người ta tìm được hai trị trí của thấu kính cho ảnh của hai khe \({S_1}\)  và \({S_2}\) rõ nét trên màn. Ở vị trí mà ảnh lớn hơn thì khoảng cách giữa hai ảnh \({S_1}'\) và \({S_2}'\) là 1,6mm. Khi bỏ thấu kính ra và chiếu sáng hai khe bằng ánh sáng đơn sắc có bước sóng \(0,6\mu m\) thì khoảng vân giao thoa trên màn là

  • A.
    1,2mm.
  • B.
    0,9mm.
  • C.
    0,45mm.
  • D.
    0,6mm.
Phương pháp giải

+ Sử dụng công thức thấu kính: \(\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}}\)

+ Sử dụng công thức viét: \(\left\{ \begin{array}{l}{x_1} + {x_2} = S\\{x_1}.{x_2} = P\end{array} \right. \Rightarrow {X^2} - S{\rm{X}} + P = 0\)

+ Sử dụng công thức tính khoảng vân: \(i = \frac{{\lambda D}}{a}\)

Lời giải của GV Loigiaihay.com

Trên hình vẽ, ta có \({L_1};{L_2}\) là 2 vị trí của thấu kính sao cho ảnh rõ nét của 2 nguồn trên màn.

Gọi \(f\) là tiêu cự của thấu kính, ta có:

+ Xét vị trí \({L_1}\): \(\frac{1}{f} = \frac{1}{{{d_1}}} + \frac{1}{{d{'_1}}}\)

+ Xét vị trí \({L_2}\): \(\frac{1}{f} = \frac{1}{{{d_2}}} + \frac{1}{{d{'_2}}}\)

\( \Rightarrow \frac{1}{{{d_1}}} + \frac{1}{{{d_1}'}} = \frac{1}{{{d_2}}} + \frac{1}{{{d_2}'}}\)

Lại có: \({d_1} + {d_1}' = {d_2} + {d_2}' = S\)

\( \Rightarrow {d_1}.{d_1}' = {d_2}{d_2}' = P\,\,\,\,\,\left( 1 \right)\)

Từ (1) ta suy ra \({d_1};{d_1}'\) là 2 nghiệm của phương trình:

\({X^2} - S{\rm{X}} + P = 0\) và \({d_2};{d_2}'\) cũng vậy.

Phương trình trên là phương trình bậc 2 có 2 nghiệm phân biệt \({X_1},{X_2}\)

Do \({d_1} \ne {d_2}\) nên \({X_1} = {d_1} = {d_2}'\) và \({X_2} = {d_2} = {d_1}'\)

Theo đề bài ta có:

\(\left\{ \begin{array}{l}{d_1} + {d_1}' = 1,2m = 120cm\\\frac{3}{{80}} = \frac{1}{{{d_1}}} + \frac{1}{{120 - {d_1}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{d_1} = {d_2}' = 40cm\\{d_1}' = {d_2} = 80cm\end{array} \right.\)

Ta xét 1 vị trí bất kì của thấu kính

Từ hình vẽ, ta có: \({S_1}'{S_2}' = {S_1}{S_2}\frac{{d'}}{d}\)

Suy ra để có ảnh lớn hơn, ta phải có \(\frac{{d'}}{d} > 1\)

Tức là thấu kính gần \({S_1}{S_2}\) hơn

Khi đó: \(\left\{ \begin{array}{l}d = 40cm\\d' = 80cm\end{array} \right.\)

\( \Rightarrow {S_1}{S_2} = {S_1}'{S_2}'\frac{d}{{d'}} = 1,6\frac{{40}}{{80}} = 0,8mm\)

Vậy \(a = 0,8mm\)

Khi bỏ thấu kính cho giao thoa ánh sáng trên màn khi đó có khoảng vân:

\(i = \frac{{\lambda D}}{a} = \frac{{0,{{6.10}^{ - 6}}.1,2}}{{0,{{8.10}^{ - 3}}}} = {9.10^{ - 4}}m = 0,9mm\)

Đáp án : B