Đề thi THPT QG - 2021 - mã 101
Có bao nhiêu số nguyên \(y\) sao cho tồn tại \(x \in \,\left( {\dfrac{1}{3};3} \right)\) thỏa mãn \(27{\,^{3{{\rm{x}}^2} + xy}} = \left( {1 + xy} \right){27^{9{\rm{x}}}}\,?\)
-
A.
27
-
B.
9
-
C.
11
-
D.
12
* pt \( \Leftrightarrow 27{\,^{3{x^2} + xy - 9x}} = xy + 1\).
\( \Rightarrow xy + 1 > 0 \Leftrightarrow y > - \dfrac{1}{x}\), khi \(x \in \left( {\dfrac{1}{3};3} \right)\) \( \Rightarrow y > - 3\) thì mới tồn tại \(x \in \left( {\dfrac{1}{3};3} \right)\).
\( \Rightarrow \) Ta chặn được \(y > - 3\) =>\(y \ge - 2\).
* \(pt \Leftrightarrow {27^{3{x^2} + xy - 9x}} - xy - 1 = 0\).
Đặt \(f\left( x \right) = g\left( y \right) = {27^{3{x^2} + xy - 9x}} - xy - 1\) ta có \(\left\{ \begin{array}{l}f\left( {\dfrac{1}{3}} \right) = {3^{y - 8}} - \dfrac{y}{3} - 1\\f\left( 3 \right) = {27^{3y}} - 3y - 1\end{array} \right.\).
Nhận thấy ngay \(f\left( 3 \right) \ge 0\,\,\forall y \in \mathbb{Z}\), chỉ bằng 0 tại \(y = 0\).
+ Xét \(y = 0 \Rightarrow \) thay vào phương trình ban đầu \( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\), loại vì không có nghiệm thuộc \(\left( {\dfrac{1}{3};3} \right)\).
+ Xét \(y \ne 0 \Rightarrow f\left( 3 \right) > 0\,\,\forall x \in {\mathbb{Z}^*}\).
1) Ta Table khảo sát \(f\left( {\dfrac{1}{3}} \right)\) với \(\left\{ \begin{array}{l}Start:\,\,y = - 2\\End:\,\,y = 17\\Step:\,\,\, = 1\end{array} \right.\)
\( \Rightarrow f\left( {\dfrac{1}{3}} \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;9} \right\}\).
\( \Rightarrow f\left( {\dfrac{1}{3}} \right).f\left( 3 \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;9} \right\}\)
\( \Rightarrow \) Có 11 giá trị của \(y\) để tồn tại nghiệm \(x \in \left( {\dfrac{1}{3};3} \right)\).
2) Từ bảng Table ta nhận thấy khi \(y \ge 10\) thì \(f\left( {\dfrac{1}{3}} \right) > 0\) và đồng biến.
Ta đi chứng minh khi \(y \ge 10\) thì phương trình vô nghiệm.
\(g'\left( y \right) = x\left( {{{27}^{3{x^2} + x\left( {y - 9} \right)}}.\ln 27 - 1} \right) > 0\,\,\left\{ \begin{array}{l}\forall y \ge 10\\x \in \left( {\dfrac{1}{3};3} \right)\end{array} \right.\)
\( \Rightarrow g\left( y \right) \ge g\left( {10} \right) = {27^{3{x^2} + x}} - 10x - 1 = h\left( x \right)\).
Ta có \(h'\left( x \right) = {27^{3{x^2} + x}}\left( {6x + 1} \right)\ln 27 - 10 > 0\,\,\forall x \in \left( {\dfrac{1}{3};3} \right)\).
\( \Rightarrow h\left( x \right) > h\left( {\dfrac{1}{3}} \right) = \dfrac{{14}}{3} > 0\).
\( \Rightarrow \) Phương trình vô nghiệm với \(x \in \left( {\dfrac{1}{3};3} \right)\).
Vậy đáp số có 11 giá trị nguyên của \(y\).
Đáp án : C
Các bài tập cùng chuyên đề
Phương trình \({4^{2x + 5}} = {2^{2 - x}}\) có nghiệm là:
Tổng các nghiệm của phương trình \({3^{{x^4} - 3{x^2}}} = 81\) là
Tìm nghiệm của phương trình \(\dfrac{{{3^{2x - 6}}}}{{27}} = {\left( {\dfrac{1}{3}} \right)^x}.\)
Tìm nghiệm của phương trình \({9^{\sqrt {x - 1} }} = {e^{\ln 81}}\)
Giải phương trình \({4^x} = {8^{x - 1}}\)
Tìm tập hợp tất cả các nghiệm của phương trình ${2^{{x^2} + x - 1}} = \dfrac{1}{2}$.
Tìm giá trị của $a$ để phương trình ${\left( {2 + \sqrt 3 } \right)^x} + \left( {1 - a} \right){\left( {2 - \sqrt 3 } \right)^x} - 4 = 0$ có 2 nghiệm phân biệt thỏa mãn:${x_1} - {x_2} = {\log _{2 + \sqrt 3 }}3$, ta có a thuộc khoảng:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm tập nghiệm S của phương trình: ${4^{x + 1}} + {4^{x - 1}} = 272$
Giải phương trình \(\sqrt {{3^x} + 6} = {3^x}\) có tập nghiệm bằng:
Tìm tích các nghiệm của phương trình \({(\sqrt 2 - 1)^x} + {(\sqrt 2 + 1)^x} - 2\sqrt 2 = 0\)
Tìm $m$ để phương trình \({4^x} - {\text{ }}{2^{x{\text{ }} + {\text{ }}3}} + {\text{ }}3{\text{ }} = {\text{ }}m\) có đúng 2 nghiệm $x \in \left( {1;3} \right)$ .
Tìm tập hợp tất cả các tham số $m$ sao cho phương trình ${4^{{x^2} - 2x + 1}} - m{.2^{{x^2} - 2x + 2}} + 3m - 2 = 0$ có 4 nghiệm phân biệt.
Các giá trị thực của tham số $m$ để phương trình : ${12^x} + \left( {4 - m} \right){.3^x} - m = 0$ có nghiệm thuộc khoảng $\left( { - 1;0} \right)$ là:
Tìm giá trị của tham số $m$ để phương trình ${9^x} - m{.3^{x + 2}} + 9m = 0$ có hai nghiệm phân biệt ${x_1};{x_2}$ thỏa mãn ${x_1} + {x_2} = 3$
Tìm tập hợp tất cả các giá trị của tham số thực $m$ để phương trình sau có 2 nghiệm phân biệt: \({9^{1 - x}} + 2(m - 1){3^{1 - x}} + 1 = 0\)
Tìm giá trị $m$ để phương trình \({2^{\left| {x - 1} \right| + 1}} + {2^{\left| {x - 1} \right|}} + m = 0\) có nghiệm duy nhất
Cho số thực $x$ thỏa mãn \(2 = {5^{{{\log }_3}x}}\) . Mệnh đề nào sau đây đúng?
Biết phương trình \({9^x} - {2^{x + \frac{1}{2}}} = {2^{x + \frac{3}{2}}} - {3^{2x - 1}}\) có nghiệm là $a$. Tính giá trị của biểu thức \(P = a + \dfrac{1}{2}{\log _{\frac{9}{2}}}2\) .
Biết rằng phương trình ${2^{{x^2} - 1}} = {3^{x + 1}}$ có hai nghiệm là $a$ và $b$. Khi đó $a+ b + ab$ có giá trị bằng