Đề bài

Đề thi THPT QG - 2021 - mã 101

Trên tập hợp các số phức, xét phương trình \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (\(m\) là tham số thực). Có bao nhiêu giá trị của \(m\) để phương trình đó có nghiệm \({z_0}\) thỏa mãn \(\left| {{z_0}} \right| = 7\)?

  • A.

    2

  • B.
    3
  • C.
    1
  • D.
    4
Phương pháp giải

- Dựa vào giả thiết \(\left| {{z_0}} \right| = 7\) xét các TH:

TH1: \({z_0}\) là số thực, thay trực tiếp \({z_0}\) vào phương trình tìm \(m\).

TH2: \({z_0}\) là số phức, tìm điều kiện để phương trình bậc hai có nghiệm phức.

Sử dụng: Theo tính chất của phương trình bậc hai trên tập phức, nếu phương trình (*) có 1 nghiệm phức \({z_0}\) chứa \(i\) thì sẽ có 1 nghiệm phức còn lại là \(\overline {{z_0}} \) và định lí Vi-ét, từ đó tìm \(m\).

Lời giải của GV Loigiaihay.com

Đặt \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (*).

TH1: \({z_0}\) là nghiệm thực \( \Rightarrow \left| {{z_0}} \right| = 7 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 7\\{z_0} =  - 7\end{array} \right.\).

+ Nếu \({z_0} = 7\) thay vào (*)

\(\begin{array}{l} \Rightarrow {7^2} - 14\left( {m + 1} \right) + {m^2} = 0\\ \Leftrightarrow {m^2} - 14m + 35 = 0\\ \Leftrightarrow m = 7 \pm \sqrt {14} \end{array}\)

\( \Rightarrow \) Có 2 giá trị thỏa mãn \(m = 7 \pm \sqrt {14} \) thì phương trình (*) có nghiệm \({z_0} = 7\) (tmycbt).

+ Nếu \({z_0} =  - 7\) thay vào (*)

\(\begin{array}{l} \Rightarrow 49 + 14\left( {m + 1} \right) + {m^2} = 0\\ \Leftrightarrow {m^2} + 14m + 63 = 0\end{array}\)

\( \Rightarrow \) Vô nghiệm.

TH2: \({z_0}\) là nghiệm có chứa \(i \Leftrightarrow \Delta ' = {\left( {m + 1} \right)^2} - {m^2} < 0 \Leftrightarrow 2m + 1 < 0 \Leftrightarrow m <  - \dfrac{1}{2}\).

Theo tính chất của phương trình bậc hai trên tập phức, nếu phương trình (*) có 1 nghiệm phức \({z_0}\) chứa \(i\) thì sẽ có 1 nghiệm phức còn lại là \(\overline {{z_0}} \).

Điều kiện \(\left| {{z_0}} \right| = 7 \Leftrightarrow {\left| {{z_0}} \right|^2} = 7 \Leftrightarrow {z_0}.\overline {{z_0}}  = {7^2} \Leftrightarrow {z_0}.\overline {{z_0}}  = 49\,\,\left( 1 \right)\).

\({z_0}\)\(\overline {{z_0}} \) là 2 nghiệm của phương trình (*), theo định lí Vi-ét ta có: \({z_0}.\overline {{z_0}}  = {m^2}\,\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow {m^2} = 49 \Leftrightarrow m =  \pm 7\).

So sánh điều kiện \(m <  - \dfrac{1}{2} \Rightarrow m =  - 7\).

Vậy tất cả TH1 và TH2 có 3 giá trị của \(m\) thỏa mãn yêu cầu bài toán (\(m = 7 \pm \sqrt {14} \)\(m =  - 7\)).

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Số phức \(w\) là căn bậc hai của số phức \(z\) nếu:

Xem lời giải >>
Bài 2 :

Căn bậc hai của số phức khác \(0\) là:

Xem lời giải >>
Bài 3 :

Căn bậc hai của số \(a =  - 3\) là:

Xem lời giải >>
Bài 4 :

Cho phương trình bậc hai \(A{z^2} + Bz + C = 0\left( {A \ne 0} \right)\). Biệt thức \(\Delta \) của phương trình được tính bởi:

Xem lời giải >>
Bài 5 :

Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng:

Xem lời giải >>
Bài 6 :

Phương trình bậc hai trên tập số phức có thể có mấy nghiệm?

Xem lời giải >>
Bài 7 :

Cho \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng:

Xem lời giải >>
Bài 8 :

Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).

Xem lời giải >>
Bài 9 :

Gọi ${z_{1,}}$${z_2}$ là các nghiệm phức của phương trình ${z^2} + 4z + 5 = 0$. Đặt $w = {\left( {1 + {z_1}} \right)^{100}} + {\left( {1 + {z_2}} \right)^{100}}$, khi đó

Xem lời giải >>
Bài 10 :

Cho phương trình \({z^2} - 2z + 2 = 0\) . Mệnh đề nào sau đây là sai?

Xem lời giải >>
Bài 11 :

Biết rằng phương trình ${z^2} + bz + c = 0\left( {b;c \in R} \right)$ có một nghiệm phức là ${z_1} = 1 + 2i$ . Khi đó:

Xem lời giải >>
Bài 12 :

Gọi \({z_0}\) là nghiệm phức có phần ảo âm của phương trình \(2{z^2} - 6z + 5 = 0\). Điểm nào dưới đây biểu diễn số phức \(i{z_0}\)?

Xem lời giải >>
Bài 13 :

Cho số phức $z = a + bi$ với $a,b$ là hai số thực khác $0$. Một phương trình bậc hai với hệ số thực nhận \(\bar z\) làm nghiệm với mọi $a,b$ là:

Xem lời giải >>
Bài 14 :

Cho số phức \({\rm{w}}\)và hai số thực \(a,b\). Biết \({z_1} = {\rm{w}} + 2i\) và \({z_2} = 2w - 3\) là 2 nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\).

Xem lời giải >>
Bài 15 :

Cho số phức $w$ và hai số thực $a,b$. Biết rằng $2w + i$ và $3w - 5$ là hai nghiệm của phương trình ${z^2} + az + b = 0$. Tìm phần thực của số phức $w$.

Xem lời giải >>
Bài 16 :

Kí hiệu \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + z + 1 = 0\). Tính \(P = z_1^2 + z_2^2 + {z_1}{z_2}.\)

Xem lời giải >>
Bài 17 :

Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:

Xem lời giải >>
Bài 18 :

Số nghiệm thực của phương trình $({z^2} + 1)({z^2} - i) = 0$ là 

Xem lời giải >>
Bài 19 :

Kí hiệu ${z_1},{z_2},{z_3},{z_4}$ là bốn nghiệm phức của phương trình ${z^4} - {z^2} - 12 = 0$. Tính tổng $T = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|$.

Xem lời giải >>
Bài 20 :

Tổng \(S = C_{2019}^0 + C_{2019}^3 + C_{2019}^6 + ... + C_{2019}^{2019}\) bằng

Xem lời giải >>