Đề bài

Đề thi THPT QG - 2021 - mã 101

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có tất cả các cạnh bằng nhau (tham khảo hình bên). Góc giữa hai đường thẳng \(AA'\) và \(BC'\) bằng

  • A.

    \({30^0}\).

  • B.

    \({90^0}\).

  • C.

    \({45^0}\)

  • D.

    \({60^0}\)

Phương pháp giải

Bước 1: Sử dụng định lí: \(\angle \left( {a;b} \right) = \angle \left( {a';b} \right)\) với \(a'//a\).

Bước 2: Sử dụng tính chất của tam giác vuông cân để tính góc.

Lời giải của GV Loigiaihay.com

Bước 1:

Do \(AA'//BB' \Rightarrow \angle \left( {AA';BC'} \right) \)\(= d\left( {BB';BC'} \right) = \angle B'BC\).

Bước 2:

Xét \(\Delta B'BC\) vuông tại \(B'\) có: \(BB' = B'C' = a\).

\( \Rightarrow \Delta B'BC\) vuông cân tại \(B' \Rightarrow \angle B'BC = {45^0}\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây đúng? 

Xem lời giải >>
Bài 2 :

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải >>
Bài 3 :

Cho tứ diện đều \(ABCD.\) Số đo góc giữa hai đường thẳng \(AB\) và \(CD\)  bằng:

Xem lời giải >>
Bài 4 :

Trong các mệnh đề sau đây, mệnh đề nào là đúng?

Xem lời giải >>
Bài 5 :

Cho tứ diện \(ABCD\) có \(AB = AC = AD\) và \(\widehat {BAC} = \widehat {BAD} = 60^\circ \). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \)?

Xem lời giải >>
Bài 6 :

Cho hình chóp \(S.ABC\) có \(SA = SB\) và \(CA = CB\). Tính số đo của góc giữa hai đường thẳng chéo nhau \(SC\) và \(AB.\)

Xem lời giải >>
Bài 7 :

Mệnh đề nào sau đây là đúng?

Xem lời giải >>
Bài 8 :

Cho tứ diện \(ABCD\) có \(AB = CD = a,IJ = \dfrac{{a\sqrt 3 }}{2}\) (\(I\), \(J\) lần lượt là trung điểm của \(BC\) và \(AD\)). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) là

Xem lời giải >>
Bài 9 :

Cho hình hộp \(ABCD.A'B'C'D'\). Giả sử tam giác \(AB'C\) và \(A'DC'\) đều có 3 góc nhọn. Góc giữa hai đường thẳng \(AC\) và \(A'D\) là góc nào sau đây?

Xem lời giải >>
Bài 10 :

Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DH} \)?

Xem lời giải >>
Bài 11 :

Trong không gian cho hai hình vuông $ABCD$ và $ABC'D'$ có chung cạnh $AB$ và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm $O$ và $O'$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và $\overrightarrow {OO'} $?

Xem lời giải >>
Bài 12 :

Cho tứ diện $ABCD$ có $AB = AC = AD$ và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Gọi $I$ và $J$ lần lượt là trung điểm của $AB$ và $CD$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {IJ} \) và \(\overrightarrow {CD} \)?

Xem lời giải >>
Bài 13 :

Cho tứ diện \(ABCD\) có \(AC = \dfrac{3}{2}AD\), \(\widehat {CAB} = \widehat {DAB} = 60^\circ \), \(CD = AD\). Gọi \(\varphi \) là góc giữa \(AB\) và \(CD\). Chọn khẳng định đúng?

Xem lời giải >>
Bài 14 :

Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?

Xem lời giải >>
Bài 15 :

Cho hình chóp $S.ABCD$ có đáy là hình vuông $ABCD$ cạnh bằng $a$ và các cạnh bên đều bằng $a$. Gọi $M$ và $N$ lần lượt là trung điểm của $AD$ và $SD$. Số đo của góc $\left( {MN,SC} \right)$ bằng:

Xem lời giải >>
Bài 16 :

Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?

Xem lời giải >>
Bài 17 :

Cho \(\left| {\overrightarrow a } \right| = 3,\left| {\overrightarrow b } \right| = 5\), góc giữa \(\overrightarrow a \) và \(\overrightarrow b \) bằng $120^\circ $. Chọn khẳng định sai trong các khẳng định sau?

Xem lời giải >>
Bài 18 :

Cho hình lập phương $ABCD.EFGH$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?

Xem lời giải >>
Bài 19 :

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?

Xem lời giải >>
Bài 20 :

Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?

Xem lời giải >>