Đề thi THPT QG - 2021 - mã 101
Cho \(a > 0\) và \(a \ne 1\), khi đó \({\log _a}\sqrt[4]{a}\) bằng
-
A.
\(4\)
-
B.
\(\dfrac{1}{4}\)
-
C.
\(-\dfrac{1}{4}\)
-
D.
\( - 4\)
Sử dụng công thức: \({\log _a}{x^m} = m{\log _a}x\,\,\left( {0 < a \ne 1,\,\,x > 0} \right)\).
Ta có: \({\log _a}\sqrt[4]{a} = {\log _a}\left( {{a^{\dfrac{1}{4}}}} \right) = \dfrac{1}{4}{\log _a}a = \dfrac{1}{4}\).
Đáp án : B
Các bài tập cùng chuyên đề
Logarit cơ số a của b kí hiệu là:
Điều kiện để ${\log _a}b$ có nghĩa là:
Cho $a > 0;a \ne 1,b > 0$, khi đó nếu ${\log _a}b = N$ thì:
Chọn mệnh đề đúng:
Cho $0 < a \ne 1,b > 0$. Chọn mệnh đề sai:
Chọn mệnh đề đúng:
Chọn mệnh đề đúng:
Với điều kiện các logarit đều có nghĩa, chọn mệnh đề đúng:
Chọn mệnh đề đúng:
Với điều kiện các biểu thức đều có nghĩa, đẳng thức nào dưới đây không đúng?
Chọn mệnh đề đúng:
Với điều kiện các logarit đều có nghĩa, chọn công thức biến đổi đúng:
Chọn đẳng thức đúng:
Chọn công thức đúng:
Với điều kiện các biểu thức đều có nghĩa, chọn đẳng thức đúng:
Giá trị ${\log _{\frac{1}{{\sqrt 3 }}}}81$ là:
Giá trị biểu thức ${\log _a}\sqrt {a\sqrt {a\sqrt[3]{a}} } $ là:
Nếu $a > 1$ và $b > c > 0$ thì:
Nếu $a > 1$ và $0 < b < 1$ thì:
Giá trị ${\log _3}a$ âm khi nào?