Một chiếc cổng parabol dạng \(y = \dfrac{{ - 1}}{2}{x^2}\) có chiều rộng \(d = 8m.\) Hãy tính chiều cao \(h\) của cổng ?
-
A.
\(h = 8m.\)
-
B.
\(h = 7m.\)
-
C.
\(h = 9m.\)
-
D.
\(h = 5m.\)
Tìm tọa độ chân cổng. Từ đó ta có chiều cổng bằng trị tuyệt đối tung độ chân cổng.
Khoảng cách từ chân cổng đến trục đối xứng \(Oy\) là \(\dfrac{8}{2} = 4\). Hoành độ 2 chân cổng là \( - 4\) và \(4\).
Tung độ chân cổng là \(y = \dfrac{{ - 1}}{2}{.4^2} = - 8\)
Chiều cao của cổng là \(\left| { - 8} \right| = 8m\)
Đáp án : A
Các bài tập cùng chuyên đề
Cho đồ thị hàm số $y = a{x^2} + bx + c\,$như hình vẽ.
Khẳng định nào sau đây là đúng:
Xác định Parabol $\left( P \right):\,\,y = a{x^2} + bx + 2$ biết rằng Parabol đi qua hai điểm $M\left( {1;\,\,5} \right)$ và $N\left( {2;\,\, - 2} \right)$.
Xác định Parabol $\left( P \right):\,\,y = a{x^2} + bx - 5$ biết rằng Parabol đi qua điểm $A\left( {3;\,\, - 4} \right)$ và có trục đối xứng $x = - \dfrac{3}{2}$.
Xác định Parabol $\left( P \right):\,\,y = a{x^2} + bx + 3$ biết rằng Parabol có đỉnh $I\left( {3;\,\, - 2} \right)$.
Viết phương trình của Parabol $(P)$ biết rằng $(P)$ đi qua các điểm $A\left( {0;\,\,2} \right),\,\,B\left( { - 2;\,\,5} \right),\,\,C\left( {3;\,\,8} \right)$
Tìm các giá trị của tham số $m$ để phương trình $2{x^2} - 2x + 1 - m = 0$ có hai nghiệm phân biệt
Tìm các giá trị thực của tham số $m$ để phương trình $\left| {{x^2} - 3x + 2} \right| = m$ có bốn nghiệm thực phân biệt.
Tìm các giá trị của tham số m để phương trình $\dfrac{1}{2}{x^2} - 4\left| x \right| + 3 = {m^2}$ có 3 nghiệm thực phân biệt.
Tìm các giá trị của $m$ để phương trình ${x^2} - 2x + \sqrt {4{x^2} - 12x + 9} = m$ có nghiệm duy nhất.
Cho phương trình của $\left( P \right):\,\,y = a{x^2} + bx + c\,\,\left( {a \ne 0} \right)$ biết rằng hàm số có giá trị lớn nhất bằng 1 và đồ thị hàm số đi qua các điểm $A\left( {2;\,\,0} \right),\,\,B\left( { - 2;\,\, - 8} \right)$. Tình tổng ${a^2} + {b^2} + {c^2}$.
Biết đồ thị hàm số $\left( P \right):\,\,y = {x^2} - \left( {{m^2} + 1} \right)x - 1$ cắt trục hoành tại hai điểm phân biệt có hoành độ \({x_1},{x_2}.\) Tìm giá trị của tham số $m$ để biểu thức $T = {x_1} + {x_2}$ đạt giá trị nhỏ nhất.
Tìm các giá trị của tham số $m$ để phương trình ${x^2} - 2\left( {m + 1} \right)x + 1 = 0$ có hai nghiệm phân biệt trong đó có đúng một nghiệm thuộc khoảng $\left( {0;\,\,1} \right)$.
Tìm các giá trị của tham số $m$ để $2{x^2} - 2\left( {m + 1} \right)x + {m^2} - 2m + 4 \ge 0 \left( {\forall x} \right)$
Tìm giá trị nhỏ nhất của hàm số $f\left( x \right)$ biết rằng $f\left( {x + 2} \right) = {x^2} - 3x + 2$ trên $\mathbb{R}$
Cho hàm số $f\left( x \right) = {x^2} + 2x - 3$.
Xét các mệnh đề sau:
i) $f\left( {x - 1} \right) = {x^2} - 4$
ii) Hàm số đã cho đồng biến trên $\left( { - 1;\,\, + \infty } \right)$
iii) Giá trị nhỏ nhất của hàm số là một số âm.
iv) Phương trình $f\left( x \right) = m$ có nghiệm khi $m \ge - 4$
Số mệnh đề đúng là:
Tìm các giá trị của m để hàm số $y = {x^2} + mx + 5$ luôn đồng biến trên $\left( {1;\,\, + \infty } \right)$.
Tìm giá trị của $m$ để hàm số $y = - {x^2} + 2x + m - 5$ đạt giá trị lớn nhất bằng $6$
Tìm giá trị của m để đồ thị hàm số $y = {x^2} - 2x + m - 1$ cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
Tìm điểm $A$ cố định mà họ đồ thị hàm số $y = {x^2} + \left( {2 - m} \right)x + 3m\,\,\left( {{P_m}} \right)$ luôn đi qua.
Tìm giá trị nhỏ nhất của biểu thức $P = 3\left( {\dfrac{{{a^2}}}{{{b^2}}} + \dfrac{{{b^2}}}{{{a^2}}}} \right) - 8\left( {\dfrac{a}{b} + \dfrac{b}{a}} \right)$.