Cho hàm số $y = {x^3} - 3{x^2} + 5x - 2$ có đồ thị $(C)$. Viết phương trình tiếp tuyến của đồ thị $(C)$ có hệ số góc nhỏ nhất.
-
A.
$y = 2x - 2$
-
B.
$y = 2x - 1$
-
C.
$y = - 2x$
-
D.
$y = - 2x + 1$
Hệ số góc của tiếp tuyến là giá trị của đạo hàm tại tiếp điểm nên để có hệ số góc nhỏ nhất thì ta cần tìm GTNN của đạo hàm.
Xét hàm số: $y = {x^3} - 3{x^2} + 5x - 2$ trên $R$
Có $y' = 3{x^2} - 6x + 5 = 3{\left( {x - 1} \right)^2} + 2 \geqslant 2.$
Dấu “=” xảy ra $x = 1.$
Với $x = 1 \Rightarrow y = 1.$
Vậy đường thẳng cần tìm là: $y - 1 = 2\left( {x - 1} \right) \Leftrightarrow y = 2x - 1.$
Đáp án : B
Các bài tập cùng chuyên đề
Hệ số góc của tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^4}}}{4} + \dfrac{{{x^2}}}{2} - 1$ tại điểm có hoành độ $x = - 1$ là:
Viết phương trình tiếp tuyến của đồ thị hàm số $y = - 2{x^3} + 4x + 2$ tại điểm có hoành độ bằng $0.$
Viết phương trình tiếp tuyến của đồ thị hàm số $y = - {x^4} + 6{x^2} - 5$ tại điểm cực tiểu của nó.
Có bao nhiêu tiếp tuyến với đồ thị $\left( C \right):y = {x^4} - 2{x^2}$ đi qua gốc tọa độ $O$?
Tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^3}}}{3} - 2{x^2} + x + 2$ song song với đường thẳng $y = - 2x + 5$ có phương trình là:
Giả sử tiếp tuyến của đồ thị hàm số $y = 2{x^3} - 6{x^2} + 18x + 1$ song song với đường thẳng $d:12x - y = 0$ có dạng $y = ax + b$. Khi đó tổng $a + b$ là:
Đồ thị hàm số nào sau đây có tiếp tuyến tại giao điểm của đồ thị và trục tung có hệ số góc âm?
Cho hàm số: $y={{x}^{3}}-{{x}^{2}}+1$ . Tìm điểm nằm trên đồ thị hàm số sao cho tiếp tuyến tại điểm đó có hệ số góc nhỏ nhất.
Cho hàm số $y = {x^4} - 2(m + 1){x^2} + m + 2$ có đồ thị $\left( C \right)$. Gọi $\Delta $ là tiếp tuyến với đồ thị $\left( C \right)$ tại điểm thuộc $\left( C \right)$ có hoành độ bằng $1$. Với giá trị nào của tham số $m$ thì $\Delta $ vuông góc với đường thẳng $d:y = - \dfrac{1}{4}x - 2016$
Cho hàm số $y = \dfrac{{2x - 1}}{{x - 1}}\,\,\,\left( C \right)$. Tìm điểm $M$ thuộc $(C)$ sao cho tiếp tuyến tại $M$ và hai trục tọa độ tạo thành tam giác cân.
Cho hàm số $y = f\left( x \right) = \dfrac{{{x^3}}}{3} - m{x^2} - 6mx - 9m + 12$ có đồ thị hàm số $\left( {{C_m}} \right)$. Khi tham số m thay đổi, các đồ thị $\left( {{C_m}} \right)$ đều tiếp xúc với một đường thẳng cố định. Đường thẳng này có phương trình:
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y = - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Cho hàm số $\left( {{C_m}} \right):y = {x^3} + m{x^2} - 9x - 9m.$ Tìm $m$ để $\left( {{C_m}} \right)$ tiếp xúc với $Ox$:
Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?
Cho hàm số $y = {x^3} + ax + b\,\,\left( {a \ne b} \right)$. Tiếp tuyến với đồ thị hàm số $f\left( x \right)$ tại $x = a$ và $x = b$ song song với nhau. Tính $f\left( 1 \right).$
Cho các hàm số $y = f (x), y = g (x), y = \dfrac{{f\left( x \right) + 3}}{{g\left( x \right) + 1}}$ . Hệ số góc của các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ $x = 1$ bằng nhau và khác $0$. Khẳng định nào dưới đây là khẳng định đúng?
Gọi \(S\) là tập hợp các giá trị nguyên của \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - \left( {m - 1} \right){x^2} + \left( {m - 1} \right)x + 5\) đều có hệ số góc dương. Số phần tử của tập \(S\) là:
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).