Đề bài

Một vật thực hiện đồng thời hai dao động điều hòa cùng phương có phương trình x1 = A1cos(ωt + φ1) và x2 = A2cos(ωt + φ2). Gọi ∆φ = φ2 – φ1, chọn phát biểu đúng

  • A.
    Nếu \(\Delta \varphi  = \left( {2k + 1} \right)\pi \,\,\left( {k \in Z} \right)\) thì biên độ dao động tổng hợp là A = A1 + A2.
  • B.
    Trong mọi trường hợp, biên độ của dao động tổng hợp thỏa mãn: \(\left| {{A_1} - {A_2}} \right| \le A \le {A_1} + {A_2}\).
  • C.
    Nếu \(\Delta \varphi  = 2k\pi \,\,\left( {k \in Z} \right)\)thì biên độ dao động tổng hợp là \(A = \left| {{A_1} - {A_2}} \right|\).
  • D.
    Nếu \(\Delta \varphi  = k\pi \,\,\left( {k \in Z} \right)\) thì biên độ dao động tổng hợp là \(A = \sqrt {{A_1}^2 + {A_2}^2} \).
Phương pháp giải

Biên độ dao động tổng hợp: \(A = \sqrt {{A_1}^2 + {A_2}^2 + 2{A_1}{A_2}\cos \Delta \varphi } \)

Lời giải của GV Loigiaihay.com

Biên độ dao động tổng hợp là: \(A = \sqrt {{A_1}^2 + {A_2}^2 + 2{A_1}{A_2}\cos \Delta \varphi } \)

Với \(\Delta \varphi  = \left( {2k + 1} \right)\pi \,\,\left( {k \in Z} \right) \Rightarrow A = \left| {{A_1} - {A_2}} \right| \to \) A sai

Với \(\Delta \varphi  = 2k\pi \,\,\left( {k \in Z} \right) \Rightarrow A = {A_1} + {A_2} \to \) C sai

Với \(\Delta \varphi  = \left( {k + \dfrac{1}{2}} \right)\pi \,\,\left( {k \in Z} \right) \Rightarrow A = \sqrt {{A_1}^2 + {A_2}^2}  \to \) D sai

→ Biên độ dao động tổng hợp thỏa mãn: \(\left| {{A_1} - {A_2}} \right| \le A \le {A_1} + {A_2} \to \) B đúng

Đáp án : B