Bài 14 trang 11 SGK Toán 9 tập 1

Bình chọn:
4.4 trên 13 phiếu

Giải bài 14 trang 11 SGK Toán 9 tập 1. Phân tích thành nhân tử:

Đề bài

 Phân tích thành nhân tử:

a) \( x^{2}- 3\).                         b) \( x^{2}- 6\);

c) \( x^{2}\) + \( 2\sqrt{3}x + 3\);            d) \( x^{2}\) - \( 2\sqrt{5}x + 5\).

Phương pháp giải - Xem chi tiết

+) Với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\)

+) Sử dụng các hằng đẳng thức:

     1) \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

     2) \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

     3) \({a^2} - {b^2} = \left( {a - b} \right).\left( {a + b} \right)\)

Lời giải chi tiết

a) Ta có: 

\(x^{2} - 3=x^2-(\sqrt{3})^2\)

            \(=(x-\sqrt{3})(x+\sqrt{3})\)  (Áp dụng hằng đẳng thức số 3)

b) Ta có: 

\(x^{2}- 6=x^2-(\sqrt{6})^2\)

             \(=(x-\sqrt{6})(x+\sqrt{6})\)  (Áp dụng hằng đẳng thức số 3)

c) Ta có: 

\(x^2+2\sqrt{3}x + 3=x^2+2.x.\sqrt{3}+(\sqrt{3})^2\)

                           \(=(x+\sqrt{3})^2\) (Áp dụng hằng đẳng thức số 1)

d) Ta có:

\(x^2-2\sqrt{5}x+5=x^2-2.x.\sqrt{5}+(\sqrt{5})^2\)

                            \(=(x-\sqrt{5})^2\)  (Áp dụng hằng đẳng thức số 2).

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan