Đề bài

Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0\) (\(m\) là tham số). Tìm các giá trị của \(m\) để phương trình trên có 2 nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(\left( {x_1^2 - 2m{x_1} + 2m - 1} \right)\left( {{x_2} - 2} \right) \le 0.\)

  • A.
    \(m \le \dfrac{3}{2}\)
  • B.
    \(m \ge \dfrac{3}{2}\)
  • C.
    \(m \le - \dfrac{3}{2}\)
  • D.
    \(m \ge - \dfrac{3}{2}\)
Phương pháp giải

Tìm điều kiện của \(m\) để phương trình đã cho có nghiệm.

Áp dụng hệ thức Vi-et và hệ thức bài cho để tìm \(m.\)

Lời giải của GV Loigiaihay.com

Xét phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0\) ta có:

\(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - 2m + 5\\\,\,\,\,\,\,\, = {m^2} - 2m + 1 - 2m + 5\\\,\,\,\,\,\,\, = {m^2} - 4m + 4 + 2\\\,\,\,\,\,\,\, = {\left( {m - 2} \right)^2} + 2 > 0\,\,\,\forall m\end{array}\)

\( \Rightarrow \) Phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\)

Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right) = 2m - 2\\{x_1}{x_2} = 2m - 5\end{array} \right..\)

Vì \({x_1}\) là nghiệm của phương trình đã cho nên ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,x_1^2 - 2\left( {m - 1} \right){x_1} + 2m - 5 = 0\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2{x_1} + 2m - 5 = 0\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2m - 1 + 2{x_1} - 4 = 0\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2m - 1 =  - 2\left( {{x_1} - 2} \right)\end{array}\)

Theo đề bài ta có:

\(\begin{array}{l}\,\,\,\,\,\,\left( {x_1^2 - 2m{x_1} + 2m - 1} \right)\left( {{x_2} - 2} \right) \le 0\\ \Leftrightarrow  - 2\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \le 0\\ \Leftrightarrow \left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\\ \Leftrightarrow {x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 \ge 0\\ \Leftrightarrow 2m - 5 - 2\left( {2m - 2} \right) + 4 \ge 0\\ \Leftrightarrow 2m - 1 - 4m + 4 \ge 0\\ \Leftrightarrow  - 2m \ge  - 3\\ \Leftrightarrow m \le \dfrac{3}{2}\end{array}\)

Vậy \(m \le \dfrac{3}{2}\) thỏa mãn điều kiện bài toán.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có hai nghiệm ${x_1};{x_2}$. Khi đó

Xem lời giải >>
Bài 2 :

Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có $a - b + c = 0$. Khi đó

Xem lời giải >>
Bài 3 :

Cho hai số có tổng là $S$ và tích là $P$ với ${S^2} \ge 4P$. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây?

Xem lời giải >>
Bài 4 :

Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$

Xem lời giải >>
Bài 5 :

Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 5x + 2 = 0$. Không giải phương trình, tính giá trị của biểu thức $A = x_1^2 + x_2^2$

Xem lời giải >>
Bài 6 :

Gọi ${x_1};{x_2}$ là nghiệm của phương trình $ - 2{x^2} - 6x - 1 = 0$. Không giải phương trình, tính giá trị của biểu thức $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}}$

Xem lời giải >>
Bài 7 :

Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 20x - 17 = 0$. Không giải phương trình, tính giá trị của biểu thức $C = x_1^3 + x_2^3$

Xem lời giải >>
Bài 8 :

Biết rằng phương trình  $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.

Xem lời giải >>
Bài 9 :

Tìm hai nghiệm của phương trình $18{x^2} + 23x + 5 = 0$ sau đó phân tích đa thức $A = 18{x^2} + 23x + 5$ sau thành nhân tử.

Xem lời giải >>
Bài 10 :

Tìm $u - v$ biết rằng $u + v = 15,uv = 36$ và $u > v$

Xem lời giải >>
Bài 11 :

Lập phương trình nhận hai số $3 - \sqrt 5 $ và $3 + \sqrt 5 $ làm nghiệm.

Xem lời giải >>
Bài 12 :

Biết rằng phương trình \({x^2} - \left( {2a - 1} \right)x - 4a - 3 = 0\) luôn có hai nghiệm ${x_1};{x_2}$ với mọi $a$. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(a\).

Xem lời giải >>
Bài 13 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 1} \right)x - m + 2 = 0\) có hai nghiệm trái dấu.

Xem lời giải >>
Bài 14 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.

Xem lời giải >>
Bài 15 :

Tìm các giá trị nguyên của \(m\) để phương trình \({x^2} - 6x + 2m + 1 = 0\) có hai nghiệm dương phân biệt

Xem lời giải >>
Bài 16 :

Tìm các giá trị của \(m\) để phương trình \(m{x^2} - 2\left( {m - 2} \right)x + 3\left( {m - 2} \right) = 0\) có hai nghiệm phân biệt cùng dấu.

Xem lời giải >>
Bài 17 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - mx - m - 1 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^3 + x_2^3 =  - 1\).

Xem lời giải >>
Bài 18 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^2 + x_2^2 = 23\).

Xem lời giải >>
Bài 19 :

Giá trị nào dưới đây gần nhất với giá trị của \(m\)để phương trình \({x^2} + 3x - m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(2{x_1} + 3{x_2} = 13\).

Xem lời giải >>
Bài 20 :

Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.

Xem lời giải >>