Đề bài

Xác định các hệ số \(a,b\) của hàm số \(y = ax + b\) để:

Câu 2

Đồ thị của nó cắt trục tung tại điểm có tung độ bằng \( - 4\) và cắt trục hoành tại điểm có hoành độ bằng \(2\).

    A.

    \(a = 2;b = 4.\)                             

    B.

    \(a = 2;b =  - 4.\)

    C.

    \(a =  - 2,b = 4\)          

    D.

    \(a = 2,b = 2\)

Đáp án: B

Phương pháp giải

+ Tìm tọa độ giao điểm của đồ thị hàm số với trục tung và trục hoành

+ Thay tọa độ các điểm vừa tìm được vào hàm số để tìm \(a,b.\)

Lời giải của GV Loigiaihay.com

Vì đồ thị  cắt trục tung tại điểm có tung độ bằng \( - 4\)  nên điểm \(A\left( {0; - 4} \right)\) thuộc đồ thị hàm số, đồ thị cắt trục hoành tại điểm có hoành độ \(2\)  nên điểm \(B\left( {2;0} \right)\) thuộc đồ thị hàm số.

Thay tọa độ điểm \(A\left( {0; - 4} \right)\) vào hàm số \(y = ax + b\) ta được \( - 4 = 0.a + b \Leftrightarrow b =  - 4\) \( \Rightarrow y = a.x - 4\)

Thay tọa độ điểm \(B\left( {2;0} \right)\) vào hàm số \(y = a.x - 4\)  ta được \(0 = a.2 - 4 \Leftrightarrow 2a = 4 \Leftrightarrow a = 2.\)

Vậy \(a = 2;b =  - 4.\)

Xem thêm các câu hỏi cùng đoạn
Câu 1

Đồ thị của nó đi qua hai điểm \(A\left( {1;3} \right),B\left( {2;4} \right)\)

    A.

    \(a = 1,b = 1\)                             

    B.

    \(a = 1,b = 2\) 

    C.

    \(a = 2,b = 2\)

    D.

    \(a = 2,b = 1\)

Đáp án: B

Phương pháp giải

Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng rồi biến đổi và tính toán.

Lời giải của GV Loigiaihay.com

Thay tọa độ các điểm \(A,B\) vào phương trình của đường thẳng ta được:

$\left\{ \begin{array}{l}3 = a + b\,\,\left( 1 \right)\\4 = 2a + b\,\,\left( 2 \right)\end{array} \right.$.

Từ \(\left( 1 \right)\) ta có \(b = 3 - a\) . Thay \(b = 3 - a\)  vào \(\left( 2 \right)\) ta được \(4 = 2a + 3 - a \Leftrightarrow a = 1 \Rightarrow b = 2\) .

 Vậy \(a = 1,b = 2\).


Các bài tập cùng chuyên đề

Bài 1 :

Cho $2$  đường thẳng $d:y = x + 3;d':y = \dfrac{{ - 2}}{3}x + \dfrac{4}{3}$. Gọi $M$ là giao điểm của $d$ và $d'$ . $A$ và $C$ lần lượt là giao điểm của $d$ và $d'$  với trục hoành; $B$ và $D$ lần lượt là giao điểm của $d$ và $d'$  với trục tung. Khi đó diện tích tam giác $CMB$ là:

Xem lời giải >>
Bài 2 :

Tìm $m$ để đường thẳng $d:y = mx + 1$ cắt đường thẳng $d':y = 2x - 1$ tại $1$  điểm thuộc đường phân giác góc phần tư thứ $II$ và thứ $IV$.

Xem lời giải >>
Bài 3 :

Có bao nhiêu giá trị nguyên của $m$ để $2$ đường thẳng $d:y = mx - 2;d':y = 2x + 1$ cắt nhau tại điểm có hoành độ là số nguyên.

Xem lời giải >>
Bài 4 :

Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:

Xem lời giải >>
Bài 5 :

Cho đường thẳng $d:y = ({m^2} - 2m + 2)x + 4$. Tìm $m$ để $d$ cắt $Ox$ tại $A$ và cắt $Oy$ tại $B$ sao cho diện tích tam giác $AOB$ lớn nhất.

Xem lời giải >>
Bài 6 :

Cho tam giác $ABC$ có đường thẳng $BC:y =  - \dfrac{1}{3}x + 1$ và $A\left( {1,2} \right)$ . Viết phương trình đường cao $AH$ của tam giác $ABC$ .

Xem lời giải >>
Bài 7 :

Điểm cố định mà đường thẳng $d:y = \dfrac{{\sqrt k  + 1}}{{\sqrt 3  - 1}}x + \sqrt k  + 3 \, (k \ge 0)$ luôn đi qua là:

Xem lời giải >>
Bài 8 :

Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:

Xem lời giải >>
Bài 9 :

Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( {1;1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Viết phương trình đường trung trực của đoạn thẳng $AB$.

Xem lời giải >>
Bài 10 :

Cho $2$  đường thẳng: $d:y = x + 3;d':y = \dfrac{{ - 2}}{3}x + \dfrac{4}{3}$. Gọi $M$ là giao điểm của $d$ và $d'$ . $A$ và $C$ lần lượt là giao điểm của $d$ và $d'$  với trục hoành; $B$ và $D$ lần lượt là giao điểm của $d$ và $d'$  với trục tung. Khi đó diện tích tam giác $CMB$ là:

Xem lời giải >>
Bài 11 :

Tìm $m$ để đường thẳng $d:y = mx + 1$ cắt đường thẳng $d':y = 2x - 1$ tại $1$  điểm thuộc đường phân giác góc phần tư thứ $II$ và thứ $IV$.

Xem lời giải >>
Bài 12 :

Giá trị nguyên có thể có của $m$ để $2$ đường thẳng $d:y = mx - 2;d':y = 2x + 1$ cắt nhau tại điểm có hoành độ là số nguyên.

Xem lời giải >>
Bài 13 :

Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:

Xem lời giải >>