Phương trình tham số của đường thẳng đi qua hai điểm \(A\left( {2; - 1} \right)\) và \(B\left( {2;5} \right)\) là
A. \(\left\{ \begin{array}{l}x = 2t\\y = - 6t\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x = 2 + t\\y = 5 + 6t\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x = 1\\y = 2 + 6t\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x = 2\\y = - 1 + 6t\end{array} \right.\).
Phương trình tham số của đường thẳng đi qua điểm \(A\left( {{x_0},{y_0}} \right)\) và nhận \(\overrightarrow u = \left( {a;b} \right)\) làm vecto chỉ phương là : \(d:\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\end{array} \right.\)
Vectơ chỉ phương \(\overrightarrow {AB} = \left( {0;6} \right)\).
Phương trình tham số của đường thẳng đi qua điểm \(A\left( {2; - 1} \right)\) và nhận \(\overrightarrow {AB} = \left( {0;6} \right)\) làm vecto chỉ phương là : \(\left\{ \begin{array}{l}x = 2\\y = - 1 + 6t\end{array} \right.\)
Chọn D