Đề bài

Một chiếc cổng hình parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ hai bên như hình vẽ. Biết chiều cao cổng parabol là 4m còn kích thước cửa ở giữa là 3m x 4m. Hãy tính khoảng cách giữa hai điểm \(A\) và \(B\). (xem hình vẽ bên dưới)

 

Phương pháp giải

Sử dụng công thức lập phương trình Parabol.

Lời giải của GV Loigiaihay.com

Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right)\): \(y = a{x^2} + bx + c\) với \(a < 0\).

Do parabol \(\left( P \right)\) đối xứng qua trục tung nên có trục đối xứng \(x = 0 \Rightarrow  - \frac{b}{{2a}} = 0 \Leftrightarrow b = 0\).

Chiều cao của cổng parabol là 4m nên \(G\left( {0;4} \right)\) \( \Rightarrow c = 4\).

\( \Rightarrow \left( P \right)\): \(y = a{x^2} + 4\).

Lại có, kích thước cửa ở giữa là 3m x 4m nên \(E\left( {2;3} \right),\;F\left( { - 2;3} \right)\) \( \Rightarrow 3 = 4a = 4 \Leftrightarrow a =  - \frac{1}{4}\).

Vậy \(\left( P \right)\): \(y =  - \frac{1}{4}{x^2} + 4\).

Ta có \( - \frac{1}{4}{x^2} + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 4\end{array} \right.\) nên \(A\left( { - 4;0} \right)\), \(B\left( {4;0} \right)\) hay \(AB = 8\) (m).