Đề bài

Một đội gồm \(5\) nam và \(8\) nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất \(3\) nữ.

A. \(\frac{{70}}{{143}}\)   

B. \(\frac{{73}}{{143}}\)

C. \(\frac{{56}}{{143}}\)

D. \(\frac{{87}}{{143}}\)

Phương pháp giải

Công thức tính xác suất.

Lời giải của GV Loigiaihay.com
Không gian mẫu là chọn tùy ý \(4\) người từ \(13\) người.

Suy ra số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{13}^4 = 715\).

Gọi \(A\) là biến cố "4 người được chọn có ít nhất 3 nữ". Ta có hai trường hợp thuận lợi cho biến cố \(A\) như sau:

● TH1: Chọn 3 nữ và 1 nam, có \(C_8^3C_5^1\) cách.

● TH2: Chọn cả 4 nữ, có \(C_8^4\) cách.

Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_8^3C_5^1 + C_8^4 = 350\).

Vậy xác suất cần tính \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{350}}{{715}} = \frac{{70}}{{143}}\).

Chọn A