Một đội gồm \(5\) nam và \(8\) nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất \(3\) nữ.
A. \(\frac{{70}}{{143}}\)
B. \(\frac{{73}}{{143}}\)
C. \(\frac{{56}}{{143}}\)
D. \(\frac{{87}}{{143}}\)
Công thức tính xác suất.
Suy ra số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{13}^4 = 715\).
Gọi \(A\) là biến cố "4 người được chọn có ít nhất 3 nữ". Ta có hai trường hợp thuận lợi cho biến cố \(A\) như sau:
● TH1: Chọn 3 nữ và 1 nam, có \(C_8^3C_5^1\) cách.
● TH2: Chọn cả 4 nữ, có \(C_8^4\) cách.
Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_8^3C_5^1 + C_8^4 = 350\).
Vậy xác suất cần tính \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{350}}{{715}} = \frac{{70}}{{143}}\).
Chọn A