Bài 75 trang 96 sgk toán lớp 9 tập 2


Cho đường tròn (O), bán kính OM

Cho đường tròn (O), bán kính OM. Vẽ đường tròn tâm O', đường kính OM. Một bán kính OA của đường tròn (O) cắt đường tròn (O') ở B.

Chứng minh cung MA và  cung MB có cùng độ dài bằng nhau.

Hướng dẫn giải:

Đặt \(\widehat {MOB} = \alpha \)

\(\Rightarrow \widehat {MO'B} = 2\alpha\) (góc nội tiếp và góc ở tâm của đường tròn (O’))

Độ dài cung MB là:

\({l_{cungMB}} = {{\pi .O'M.2\alpha } \over {{{180}^0}}} = {{\pi .O'M.\alpha } \over {{{90}^0}}}(1)\)

Độ dại cung MA là:

\({l_{cungMA}} = {{\pi .OM.\alpha } \over {{{180}^0}}} = {{2\pi .O'M.\alpha } \over {{{180}^0}}} = {{\pi O'M.\alpha } \over {{{90}^0}}}(2)\)

(Vì OM = 2O’M)

Từ (1) và (2) ⇒ sđcung MA = sđcung MB 

>>>>> Bí kíp luyện thi 9 vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô Top 1 trên cả nước