Bài 68 trang 95 sgk Toán lớp 9 tập 2


Bài 68. Cho ba điểm A, B, C

Bài 68. Cho ba điểm \(A, B, C\) thẳng hàng sao cho \(B\) nằm  giữa \(A\) và \(C\). Chứng minh rằng độ dài của nửa đường tròn đường kính \(AC\) bằng tổng các độ dài của hai nửa đường tròn đường kính \(AB\) và \(BC\).

Hướng dẫn giải:

Gọi \({C_1},{C_2},{C_3}\) lần lượt là độ dài của các nửa đường tròn đường kính \(AC, AB, BC\), ta có:

                                    \({C_1}\) = \(π. AC\)              (1)

                                    \({C_2}\) = \(π.AB\)               (2)

                                     \({C_3}\) = \(π.BC \)              (3)

So sánh (1), (2), (3) ta thấy:

 \({C_2} + {C_3} = \pi (AB + BC) = \pi AC\)

Vậy \({C_1} = {C_2} + {C_3}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu