Bài 22 trang 76 sgk Toán lớp 9 tập 2


Bài 22. Trên đường tròn (O) đường kính AB

Bài 22. Trên đường tròn \((O)\) đường kính \(AB\), lấy điểm \(M\) (khác \(A\) và \(B\)). Vẽ đường qua \(A\) cắt \((O)\) tại \(A\). Đường thẳng \(BM\) cắt tiếp tuyến đó tại \(C\). Chứng minh rằng ta luôn có: \(M{A^2} = MB.MC\)

Hướng dẫn giải:

Ta có: \(∆MAB\) đồng dạng \(∆MCA\)  (\(\widehat{A_{2}}\) = \(\widehat{C}\); \(\widehat{B}\) = \(\widehat{A_{1}}\))

nên \(\frac{MA}{MB}\) = \(\frac{MC}{MA}\)

Suy ra  \(M{A^2} = MB.MC\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu