Bài 19 trang 75 sgk Toán lớp 9 tập 2


Bài 19. Cho một đường tròn tâm O

Bài 19. Cho một đường tròn tâm \(O\), đường kính \(AB\) và \(S\) là một điểm nằm ngoài đường tròn. \(SA\) và \(SB\) lần lượt  cắt đường tròn tại \(M, N\). Gọi \(H\) là giao điểm của \(BM\) và \(AN\). Chứng minh rằng \(SH\) vuông góc với \(AB\).

Hướng dẫn giải:

\(BM \bot SA\) (\(\widehat{AMB}\) = \(90^{\circ}\) vì là góc nội tiếp chắn nửa đường tròn).

Tương tự, có: \(AN \bot SB\)

Như vậy \(BM\) và \(AN\) là hai đường cao của tam giác \(SAB\) và \(H\) là trực tâm.

Suy ra \(SH \bot AB\).

(Trong một tam giác ba đường cao đồng quy)

loigiaihay.com

Đã có lời giải Sách bài tập Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 9 luyện thi vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu