Bài 23 trang 76 sgk Toán lớp 9 tập 2


Bài 23. Cho đường tròn (O)

Bài 23. Cho đường tròn \((O)\) và một điểm \(M\) cố định không nằm trên đường tròn. Qua \(M\) kẻ hai đường thẳng. Đường thẳng thứ nhất cắt \((O)\) tại \(A\) và \(B\).Đường thẳng thứ nhất cắt \((O)\) tại \(C\) và \(D\).

Chứng minh \(MA. MB = MC. MD\)

Hướng dẫn giải:

Xét hai trường hợp:

a) \(M\) ở bên trong đường tròn (hình a)

Xét hai tam giác \(MAB'\) và \(MA'B\) có:

              \(\widehat{M_{1}}\) = \(\widehat{M_{2}}\) ( đối đỉnh)

              \(\widehat{B'}\) = \(\widehat{B}\) (hai góc nội tiếp cùng chắn cung  \(AA'\)).

Do đó \(∆MAB'\) đồng dạng \(∆MA'B\), suy ra:

             \(\frac{MA}{MA'}\) = \(\frac{MB'}{MB}\), do đó \(MA. MB = MB'. MA'\)

b) \(M ở bên ngoài đường tròn (hình b)

Tương tự ta có:

\(∆MAB'\) đồng dạng \(∆MA'B\)

     \(\widehat{M}\) chung  

     \(\widehat{B'}\) = \(\widehat{B}\) (hai góc nội tiếp cùng chắn cung \(AA'\)).

Suy ra:     \(\frac{MA}{MA'}\) = \(\frac{MB'}{MB}\)

          hay \(MA. MB = MB'. MA'\)

loigiaihay.com

Đã có lời giải Sách bài tập Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>>>> Học tốt lớp 9 luyện thi vào 10 các môn Toán, Văn, Anh, Lý, Hóa năm 2018 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu