Đề bài

Cho \(\Delta ABC\) vuông tại A, đường cao AH. Trên tia đối của tia AH lấy điểm \(D\) sao cho \(AD = AH.\) Gọi \(E\) và \(M\) lần lượt là trung điểm của HCvà DC, gọi \(F\) là giao điểm của DE và AC.

a) Chứng minh rằng ba điểm \(H,{\mkern 1mu} F,{\mkern 1mu} M\) thẳng hàng.

b) Chứng minh rằng \(HF = \dfrac{1}{3}DC\) .

c) Gọi \(P\) là trung điểm AH. Chứng minh \(EP \bot DB\).

d) Chứng minh \(BP \bot DC\) và \(CP \bot DB.\)

 

Phương pháp giải

a) Chứng minh \(F\) là trọng tâm của \(\Delta DHC\), khi đó suy ra được H,F,M cùng nằm trên 1 đường thẳng.

b) Chỉ ra \(HM = \dfrac{1}{2}DC\), mà \(HM = \dfrac{3}{2}HF;\) \( \Rightarrow \dfrac{3}{2}HF = \dfrac{1}{2}DC \Rightarrow HF = \dfrac{1}{3}DC.\)

c) Chứng minh \(\Delta PHE = \Delta ICE\)(c.g.c), để chỉ ra \(AP = IC\), \(\angle APC{\mkern 1mu}  = {\mkern 1mu} \angle PCI\); rồi chứng minh \( \Rightarrow \Delta APC = \Delta ICP\left( {g.c.g} \right)\)

\( \Rightarrow \angle ACP = \angle IPC \Rightarrow PE//AC\)

Mà \(AB \bot AC \Rightarrow PE \bot AB\).

d) Chứng minh: \(P\) là trực tâm của \(\Delta BDC\)\( \Rightarrow CP \bot BD\).

 

Lời giải của GV Loigiaihay.com

 

a) Xét \(\Delta DHC\) có hai đường trung tuyến CA và DE cắt nhau tại \(F\)

\( \Rightarrow F\) là trọng tâm của \(\Delta DHC\).

Mà HM là đường trung tuyến \( \Rightarrow F{\mkern 1mu}  \in {\mkern 1mu} HM\)

Hay ba điểm \(H,{\mkern 1mu} F,{\mkern 1mu} M\) thẳng hàng.

b) \(\Delta DHC\) vuông tại \(H\) có HM là đường trung tuyến ứng với cạnh huyền DC.

\( \Rightarrow HM = \dfrac{1}{2}DC\).

Mà \(HM = \dfrac{3}{2}HF \Rightarrow \dfrac{3}{2}HF = \dfrac{1}{2}DC \Rightarrow HF = \dfrac{1}{3}DC.\)

c) Trên tia đối của tia EP lấy điểm \(I\) sao cho \(EP = EI\)

Xét \(\Delta PHE\) và \(\Delta ICE\) có:

\(\begin{array}{*{20}{l}}{EH = EC}\\{EP = EI}\end{array}\)

\(\angle PEH = \angle IEC\) (đối đỉnh)

\( \Rightarrow \Delta PHE = \Delta ICE\)(c.g.c)

\( \Rightarrow PH = IC = AP\)

Và \(\angle PHE = \angle ECI \Rightarrow AH//IC \Rightarrow \angle APC = \angle PCI{\mkern 1mu} {\mkern 1mu} \left( {so{\mkern 1mu} le{\mkern 1mu} trong} \right)\)

Xét \(\Delta APC{\mkern 1mu} \) và \(\Delta ICP\) có:

\(\begin{array}{*{20}{l}}{PC{\mkern 1mu} chung}\\{AP = IC}\\{\angle APC = \angle PCI}\end{array}\)

\( \Rightarrow \Delta APC = \Delta ICP\left( {g.c.g} \right)\)

\( \Rightarrow \angle ACP = \angle IPC \Rightarrow PE//AC\)

Mà \(AB \bot AC \Rightarrow PE \bot AB\).

d) Chứng minh \(BP \bot DC\)

Xét \(\Delta ABE\) có hai đường cao AH cắt EP tại \(P\)

\( \Rightarrow P\) là trực tâm của \(\Delta ABE\)

\( \Rightarrow BP \bot AE\) mà \(AE//DC\)

\( \Rightarrow BP \bot DC\)

Xét \(\Delta BDC\) có hai đường cao DH cắt BP tại \(P\)

\( \Rightarrow P\) là trực tâm của \(\Delta BDC\)

\( \Rightarrow CP \bot BD\).