Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
-
A.
$3$
-
B.
$2$
-
C.
$1$
-
D.
$4$
+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.
+ Tìm số hạng bằng tổng trừ đi số hạng đã biết.
Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\)
\(23 + \left( {13 + 72 - x} \right) = 240 - 132\)
\(23 + \left( {85 - x} \right) = 108\)
\(85 - x = 108 - 23\)
\(85 - x = 85\)
\(x = 85 - 85\)
\(x = 0.\)
Vậy có một giá trị \(x = 0\) thỏa mãn đề bài.
Đáp án : C
Các bài tập cùng chuyên đề
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
Giá trị nào dưới đây của \(x\) thỏa mãn \({2^4}.x - {3^2}.x = 145 - 255:51?\)
Câu nào dưới đây là đúng khi nói đến giá trị của \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\) ?
Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được
Giá trị của \(x\) thỏa mãn \(65 - {4^{x + 2}} = {2020^0}\) là
Cho \(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\) và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\). Chọn câu đúng.
Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là
Trong một cuộc thi có \(20\) câu hỏi. Mỗi câu trả lời đúng được \(10\) điểm, mỗi câu trả lời sai bị trừ \(3\) điểm. Một học sinh đạt được \(148\) điểm. Hỏi bạn đã trả lời đúng bao nhiêu câu hỏi?
Gọi \({x_1}\) là giá trị thỏa mãn \({5^{x - 2}} - {3^2} = {2^4} - \left( {{2^8}{{.2}^4} - {2^{10}}{{.2}^2}} \right)\) và \({x_2}\) là giá trị thỏa mãn \(697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\) . Tính \({x_1}.{x_2}\).
Tính: \(1 + 12.3.5\)
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)