Đề bài

Tìm \(m\) để các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt[3]{{x - 2}} + 2x - 1}}{{x - 1}}{\rm{  khi }}x \ne 1\\3m - 2{\rm{              khi }}x = 1\end{array} \right.\) liên tục trên \(\mathbb{R}\).

  • A.

    \(m = \frac{13}{9}\)

  • B.
    \(m = \frac{5}{3}\)
  • C.
    \(m = \frac{3}{4}\)
  • D.
    \(m = 0\)
Phương pháp giải

Hàm số \(y = \left\{ \begin{array}{l}f(x){\rm{  khi }}x \ne {x_0}\\k{\rm{      khi }}x = {x_0}\end{array} \right.\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = k\).

Hàm số liên tục trên tập xác định.

Lời giải của GV Loigiaihay.com

Với \(x \ne 1\) ta có \(f\left( x \right) = \frac{{\sqrt[3]{{x - 2}} + 2x - 1}}{{x - 1}}\) nên hàm số liên tục trên khoảng \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Do đó hàm số liên tục trên \(\mathbb{R}\) khi và chỉ khi hàm số liên tục tại \(x = 1\).

Ta có: \(f\left( 1 \right) = 3m - 2\).

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x - 2}} + 2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left[ {1 + \frac{{{x^3} + x - 2}}{{\left( {x - 1} \right)\left( {{x^2} - x\sqrt[3]{{x - 2}} + \sqrt[3]{{{{(x - 2)}^2}}}} \right)}}} \right]\\ = \mathop {\lim }\limits_{x \to 1} \left[ {1 + \frac{{{x^2} + x + 2}}{{{x^2} - x\sqrt[3]{{x - 2}} + \sqrt[3]{{{{\left( {x - 2} \right)}^2}}}}}} \right] = \frac{7}{3}.\end{array}\)

Nên hàm số liên tục tại \(x = 1 \Leftrightarrow 3m - 2 = \frac{7}{3} \Leftrightarrow m = \frac{13}{9}\).

Vậy \(m = \frac{13}{9}\) là những giá trị cần tìm.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Tìm các khoảng trên đó hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{x + 2}}\) liên tục.

Xem lời giải >>
Bài 2 :

Cho hai hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{2x\;,\;0 \le x \le \frac{1}{2}}\\{1\;,\frac{1}{2} < x \le 1}\end{array}} \right.\) và \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x\;,0 \le x \le \frac{1}{2}}\\{1\;,\frac{1}{2} < x \le 1}\end{array}} \right.\)với đồ thị tương ứng như Hình 5.7

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\)và nhận xét về sự khác nhau giữa hai đồ thị.

Xem lời giải >>
Bài 3 :

Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\)                          

b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + {x^2}\;,\;x < 1}\\{4 - x\;\;,\;x \ge 1}\end{array}} \right.\)

Xem lời giải >>
Bài 4 :

Cho hàm số \(f\left( x \right) = \frac{{x + 1}}{{\left| {x + 1} \right|}}\). Hàm só \(f\left( x \right)\) liên tục trên

A. \(\left( { - \infty ;\; + \infty } \right)\)                      

B. \(\left( { - \infty ;\; - 1} \right]\)                               

C. \(\left( { - \infty ;\; - 1} \right) \cup \left( { - 1;\; + \infty } \right)\)                    

D. \(\left[ { - 1;\; + \infty } \right)\)      

Xem lời giải >>
Bài 5 :

Tìm tập xác định của các hàm số sau và giải thích tại sao các hàm này liên tục trên các khoảng xác định của chúng

a) \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 5x + 6}}\);                              

b) \(g\left( x \right) = \frac{{x - 2}}{{\sin x}}\)

Xem lời giải >>
Bài 6 :

Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là

\(F\left( r \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{GMr}}{{{R^3}}}\;,r < R}\\{\frac{{GM}}{{{r^2}}}\;,\;r \ge R}\end{array}} \right.\)

Trong đó M R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).

Xem lời giải >>
Bài 7 :

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x - 1,\,\,x < 2\\ - x,\,\,x \ge 2\end{array} \right.\) có liên tục trên \(\mathbb{R}\) hay không?

Xem lời giải >>
Bài 8 :

Cho hàm số \(f\left( x \right) = x + 1\) với \(x \in \mathbb{R}.\)

a) Giả sử \({x_0} \in \mathbb{R}.\) Hàm số \(f\left( x \right)\) có liên tục tại điểm \({x_0}\) hay không?

b) Quan sát đồ thị hàm số \(f\left( x \right) = x + 1\) với \(x \in \mathbb{R}\) (Hình 13), nếu nhận xét về đặc điểm của đồ thị hàm số đó.

Xem lời giải >>
Bài 9 :

Trong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.

Xem lời giải >>
Bài 10 :

Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:

a) \(f\left( x \right) = {x^2} + \sin x;\) 

b) \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}};\)         

c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}.\)

Xem lời giải >>
Bài 11 :

Tại một xưởng sản xuất bột đã thạch anh, giá bán (tính theo nghìn đồng) của \(x\) (kg) bột đã thạch anh được tính theo công thức sau:

\(P\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{4,5x}&{khi\,\,0 < x \le 400}\\{4x + k}&{khi\,\,x > 400}\end{array}} \right.\)                (\(k\) là một hãng số).

a) Với \(k = 0\), xét tính liên tục của hàm số \(P\left( x \right)\) trên \(\left( {0; + \infty } \right)\).

b) Với giá trị nào của \(k\) thì hàm số \(P\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)?

Xem lời giải >>
Bài 12 :

Xét tính liên tục của hàm số \(y = \sqrt {x - 1}  + \sqrt {2 - x} \) trên \(\left[ {1;2} \right]\).

Xem lời giải >>
Bài 13 :

Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).

a) Xét tính liên tục của hàm số tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).

b) Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) và so sánh giá trị này với \(f\left( 2 \right)\).

c) Với giá trị nào của \(k\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\)?

Xem lời giải >>
Bài 14 :

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 4}}{{x + 2}}}&{khi\,\,x \ne  - 2}\\a&{khi\,\,x =  - 2}\end{array}} \right.\).

Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Xem lời giải >>
Bài 15 :

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\);

b) \(g\left( x \right) = \sqrt {9 - {x^2}} \);   

c) \(h\left( x \right) = \cos x + \tan x\).

Xem lời giải >>
Bài 16 :

Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {x + 4} }&{khi\,\,x \ge 0}\\{2\cos x}&{khi\,\,x < 0}\end{array}} \right.\).

Xem lời giải >>
Bài 17 :

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).

Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Xem lời giải >>
Bài 18 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\tan x\;\;\;\;\;\;\,khi\;0 < x \le \frac{\pi }{4}\\k - \cot x\;\,khi\;\frac{\pi }{4} < x \le \frac{\pi }{2}\end{array} \right.\) liên tục tại trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\). Giá trị của k bằng

A. 0.

B. 1.

C. 2.

D. \(\frac{\pi }{2}\).

Xem lời giải >>
Bài 19 :

Hàm số \(y = f\left( x \right)\) liên tục trên khoảng:

A. \(\left( { - \infty ;1} \right)\)                            

B. \(\left( { - \infty ; + \infty } \right)\)      

C. \(\left( {1; + \infty } \right)\)            

D. \(\left( { - \infty ;2} \right)\)

Xem lời giải >>
Bài 20 :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3\;\;\;\;\;\;\;\;\;khi\;x \le 1\\ax + b\;\;khi\;1 < x < 2\\5\;\;\;\;\;\;\;\;\;khi\;x \ge 2\end{array} \right.\). Xác định a, b để hàm số liên tục trên \(\mathbb{R}\).

Xem lời giải >>
Bài 21 :

Tìm tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\;\;\;khi\;x < 1\\mx + 1\;\;khi\;x \ge 1\end{array} \right.\) liên tục trên \(\mathbb{R}\).

Xem lời giải >>
Bài 22 :

Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) \(f\left( x \right) = \frac{{{x^3} + x + 1}}{{{x^2} - 3x + 2}}\)                                 

b) \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 3x - 4}}\)

Xem lời giải >>
Bài 23 :

Cho hàm số \(f(x) = \left\{ \begin{array}{l}2\,\,\,{\rm{khi}}\,\,\, - 1 < x \le 1\\1 - x\,\,{\rm{khi}}\,\,x \le  - 1\,\,{\rm{hay}}\,\,x > 1\end{array} \right.\). Mệnh đề đúng là

A. Hàm số \(f(x)\) liên tục trên \([ - 1;\,1]\)

B. Hàm số \(f(x)\) liên tục trên \(( - 1;\,1]\)

C. Hàm số \(f(x)\) liên tục trên \([ - 1;\,1)\)

D. Hàm số \(f(x)\) liên tục trên \(\mathbb{R}\).

Xem lời giải >>
Bài 24 :

Xét hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} + 3x + 2}}{{x + 1}}\,\,{\rm{khi}}\,\,x \ne  - 1\\m\,\,{\rm{khi}}\,\,\,x =  - 1\end{array} \right.\) với m là tham số. Hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) khi

A. \(m = 0\)         

B.\(m = 3\)          

C.\(m =  - 1\)                 

D.\(m = 1\).

Xem lời giải >>
Bài 25 :

Cho hàm số \(f(x) = \frac{{x(x - 1)}}{{\sqrt {x - 1} }}\). Hàm số này liên tục trên

A.\(\left( {1; + \infty } \right)\)                  

B.\(\left( { - \infty ;1} \right)\)          

C. \([1; + \infty )\)               

D. \(( - \infty ;1]\).

Xem lời giải >>
Bài 26 :

Cho các hàm số \(y = \cos x\,\left( I \right)\), \(y = \sin \sqrt x \,\left( {II} \right)\) và \(y = \tan x\,\left( {III} \right)\). Hàm số nào liên tục trên \(\mathbb{R}\)?

Xem lời giải >>
Bài 27 :

Tìm khẳng định đúng trong các khẳng định sau:

I. \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right) \cdot f\left( b \right) < 0\) thì phương trình \(f\left( x \right) = 0\) có nghiệm.

II. \(f\left( x \right)\) không liên tục trên \(\left[ {a;b} \right]\) và \(f\left( a \right) \cdot f\left( b \right) \ge 0\) thì phương trình \(f\left( x \right) = 0\) vô nghiệm.

Xem lời giải >>
Bài 28 :

Hàm số nào sau đây liên tục trên \(\mathbb{R}?\)

Xem lời giải >>
Bài 29 :

Hàm số nào sau đây liên tục trên $\mathbb{R}$?

Xem lời giải >>
Bài 30 :

Cho hàm số $y = f\left( x \right)$ liên tục trên $\left( {a;b} \right)$. Điều kiện cần và đủ để hàm số liên tục trên $\left[ {a;b} \right]$

Xem lời giải >>