Cho hình vẽ sau. Tính số đo góc $x?$
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({70^0}\)
Áp dụng tính chất tổng ba góc trong một tam giác.
Xét tam giác $ACF$ có :$\widehat A + \widehat {ACF} + \widehat {AFC} = {180^0} \Leftrightarrow {60^0} + \widehat {ACF} + {90^0} = {180^0}$
\( \Rightarrow \widehat {ACF} = {180^0} - {60^0} - {90^0} = {30^0}.\)
Xét \(\Delta IEC\) ta có: \(\widehat {IEC} + \widehat {ECI} + \widehat {EIC} = {180^0} \Leftrightarrow {30^0} + x + {90^0} = {180^0}\)
\( \Rightarrow x = {180^0} - {30^0} - {90^0} = {60^0}.\)
Đáp án : C
Các bài tập cùng chuyên đề
Tổng ba góc của một tam giác bằng
Cho tam giác \(ABC\) vuông tại \(A\). Khi đó
Cho tam giác $ABC$ có \(\widehat A = {96^0},\widehat C = {50^0}\). Số đo góc $B$ là:
Cho hình vẽ sau. Tính số đo \(x.\)
Cho tam giác có ba góc bằng nhau. Tính số đo mỗi góc .
Cho hình sau. Tính số đo $x.$
Cho tam giác \(ABC\) biết rằng số đo các góc $\widehat A;\widehat B;\widehat C$ tỉ lệ với $2;\,\,3;\,\,4$. Tính \(\widehat B.\)
Tam giác $ABC$ có $\widehat A = {100^0},\widehat B - \widehat C = {40^0}$. Số đo góc $B$ và góc $C$ lần lượt là:
Cho tam giác $ABC$ có $\widehat A = {50^0},\widehat B = {70^0}.$ Tia phân giác của góc C cắt cạnh AB tại M. Tính \(\widehat {AMC}\) và \(\widehat {BMC}.\)
Cho tam giác ABC có \(\widehat B = {80^0},3\widehat A = 2\widehat C.\)Tính \(\widehat A\) và \(\widehat C?\)
Cho tam giác ABC. Tia phân giác của góc A cắt BC tại D. Tính số đo $\widehat {ADC}$ biết rằng: \(\widehat B - \widehat C = {20^0}.\)