Lý thuyết phương trình đường thẳng trong không gian

Bình chọn:
3.7 trên 3 phiếu

1. Đường thẳng ∆ qua điểm M0(x0 ; y0 ; z0) có vectơ chỉ phương (a1 ; a2 ; a3) có phương trình tham số dạng.

1. Đường thẳng  ∆ qua điểm M0(x0 ; y0 ; z0) có vectơ chỉ phương  \(\overrightarrow{a}\)(a1 ; a2 ; a3) có phương trình tham số dạng:

                   \(\left\{\begin{matrix} x=x_{0}+ a_{1}t & & \\ y= y_{0}+a_{2}t & & \\ z=z_{0}+a_{3}t & & \end{matrix}\right.\), t ∈ R là tham số.

Nếu a1, a2, ađều khác không, ta viết phương trình trên ở dạng chính tắc:

                   \(\frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{a_{2}}=\frac{z-z_{0}}{a_{3}}.\)

2. Cho đường thẳng ∆1qua điểm M­1 và có vec tơ chỉ phương \(\overrightarrow{u_{1}}\), đường thẳng ∆qua điểm M­2  và có vec tơ chỉ phương \(\overrightarrow{u_{2}}\).

* ∆và ∆chéo nhau ⇔ ∆và ∆không nằm trong cùng một mặt phẳng

                                ⇔ \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ]\overrightarrow{M_{1}M_{2}}\neq 0\).

* ∆và ∆song song ⇔ \(\left\{\begin{matrix} \overrightarrow{u_{1}}=k\overrightarrow{u_{2}}\\ M_{1}\in \Delta _{1}\\ M_{2}\notin \Delta _{2} \end{matrix}\right.\).


* ∆trùng với ∆2  ⇔ \(\overrightarrow{u_{1}}\), \(\overrightarrow{u_{2}}\), \(\overrightarrow{M_{1}M_{2}}\) là ba vectơ cùng phương.

* ∆cắt  ∆2  ⇔ \(\overrightarrow{u_{1}},\overrightarrow{u_{2}}\) không cùng phương và \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ]\overrightarrow{M_{1}M_{2}}= 0\).

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan