Bài tập 8 - Trang 91 - SGK Hình học 12

Bình chọn:
3.5 trên 6 phiếu

Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0. Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α).

Bài 8. Cho điểm \(M(1 ; 4 ; 2)\) và mặt phẳng \((α): x + y + z -1 = 0\).

a) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(M\) trên mặt phẳng \((α)\) ;

b) Tìm tọa độ điểm \(M'\) đối xứng với \(M\) qua mặt phẳng \((α)\).

c) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \((α)\).

Giải:

a) Xét đường thẳng \(d\) qua \(M\) và \(d ⊥ (α)\).

Khi đó \(H\) chính là giao điểm của \(d\) và \((α)\). 

Vectơ \(\overrightarrow{n}(1 ; 1 ; 1)\) là vectơ pháp tuyến của \((α)\) nên \(\overrightarrow{n}\) là vectơ chỉ phương của \(d\).

Phương trình tham số của đường thẳng \(d\) có dạng:    \(\left\{\begin{matrix} x=1+t & \\ y=4+t & \\ z=2+t & \end{matrix}\right.\).

Thay tọa độ \(x ; y ; z\) của phương trình trên vào phương trình xác định \((α)\), ta có:

\(3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0)\).

b) Gọi \(M'(x ; y ; z)\) là điểm đối xứng của \(M\) qua mặt phẳng \((α)\), thì hình chiếu vuông góc \(H\) của \(M\) xuống \((α)\) chính là trung điểm của \(MM'\).

Ta có: 

\(\frac{x+1}{2}=-1 => x = -3\) ;

\(\frac{y+4}{2}=2   => y = 0\) ;

\(\frac{z+2}{2}=0    => z = -2\).

Vậy \(M'(-3 ; 0 ;2)\).

c) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \((α)\) 

Cách 1: \(d(M,(\alpha ))=\frac{|1+4+2-1|}{\sqrt{1+1+1}}=\frac{6}{\sqrt{3}}=2\sqrt{3}\).

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

     \(d(M,(α) )= MH\) = \(\sqrt{2^{2}+2^{2}+2^{2}}=2\sqrt{3}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan