Bài tập 10 - Trang 91 - SGK Hình học 12.


Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách từ đỉnh A đến các mặt phẳng (A'BD) và B'D'C)

Bài 10. Giải bài toán sau đây bằng phương pháp tọa độ:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(1\). Tính khoảng cách từ đỉnh \(A\) đến các mặt phẳng \((A'BD)\) và \((B'D'C)\).

 Giải

Chọn hệ trục tọa độ \(Oxyz\) sao cho \(A(0 ; 0 ; 0), B(1 ; 0 ;  0), D(0 ; 1; 0), A'(0 ; 0 ; 1)\)

Khi đó

\(B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0)\). Phương trình mặt phẳng \((A'BD)\) có dạng:

 \(x + y + z - 1 = 0\).                         (1)

\(\overrightarrow{CB'}(0 ; -1 ; 1)\) ; \(\overrightarrow{CD'}(-1 ; 0 ; 1)\).

Mặt phẳng \((B'D'C)\) qua điểm \(C\) và nhận \(\overrightarrow{n}=\left [\overrightarrow{CB'},\overrightarrow{CD'} \right ] = (-1 ; -1 ; -1 )\) làm vectơ pháp tuyến. Phương trình mặt phẳng \((B'D'C)\) có dạng:

\(x + y + z - 2 = 0\)                          (2)

Ta có \(d_{1}(A,(A'BD))=\frac{1}{\sqrt{3}}.\)

       \(d_{2}(A,(B'D'C))=\frac{2}{\sqrt{3}}.\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu