Bài 39 trang 57 sgk Toán 9 tập 2

Bình chọn:
4.4 trên 8 phiếu

Giải phương trình bằng cách đưa về phương trình tích.

Bài 39. Giải phương trình bằng cách đưa về phương trình tích.

a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\);

b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\);                     

c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\);

d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\).

Bài giải.

a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow\)\(\left[ \matrix{
(3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10){\rm{ }} = {\rm{ }}0(1) \hfill \cr
2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + \sqrt 5 -{\rm{ }}3{\rm{ }} = {\rm{ }}0(2) \hfill \cr} \right.\)

Giải (1): phương trình \(a - b + c = 3 + 7 - 10 = 0\)

nên \({x_1} =  - 1,{x_2} =  - {{ - 10} \over 3} = {{10} \over 3}\)

Giải (2): phương trình có \(a + b + c = 2 + (1 -  \sqrt{5}) +  \sqrt{5} - 3 = 0\)

nên  \({x_3} = 1,{x_4} = {{\sqrt 5  - 3} \over 2}\)

b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\) \(\Leftrightarrow {x^2}\left( {x{\rm{ }} + {\rm{ }}3} \right){\rm{ }}-{\rm{ }}2\left( {x{\rm{ }} + {\rm{ }}3} \right){\rm{ }} = {\rm{ }}0 \)

\(\Leftrightarrow \left( {x{\rm{ }} + {\rm{ }}3} \right)({x^2} - {\rm{ }}2){\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow\)\(\left[ \matrix{
x + 3 = 0 \hfill \cr
{x^2} - {\rm{ }}2{\rm{ }} = {\rm{ }}0 \hfill \cr} \right.\)

Giải ra \({x_1} = {\rm{ }} - 3,{\rm{ }}{x_{2}} = {\rm{ }} - \sqrt 2 ,{\rm{ }}{x_{3}} = \sqrt 2 \)

c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\) \( \Leftrightarrow {\rm{ }}\left( {0,6x{\rm{ }} + {\rm{ }}1} \right)\left( {{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}1} \right){\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow \left[ \matrix{
0,6x + 1 = 0(1) \hfill \cr
{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0(2) \hfill \cr} \right.\)

(1) ⇔ \(0,6x + 1 = 0 \)

\( \Leftrightarrow {x_1} =  - {1 \over {0,6}} =  - {5 \over 3}\)

(2):\(\Delta  = {( - 1)^2} - 4.1.( - 1) = 1 + 4 = 5,\sqrt \Delta   = \sqrt 5,\)

\({x_2} = {\rm{ }}{{1 - \sqrt 5 } \over 2},{x_3} = {{1 + \sqrt 5 } \over 2}\)

Vậy phương trình có ba nghiệm:

\({x_1} =  - {5 \over 3},{x_2} = {{1 - \sqrt 5 } \over 2},{x_3} = {{1 + \sqrt 5 } \over 2}\),

d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\)\( \Leftrightarrow {\rm{ }}{({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} - {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2} = {\rm{ }}0\)

\(\Leftrightarrow ({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} + {\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5).\)

\(({\rm{ }}{x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} - {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} - {\rm{ }}5){\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}x)\left( {3x{\rm{ }}-{\rm{ }}10} \right){\rm{ }} = {\rm{ }}0\)

⇔\( x(2x + 1)(3x – 10) = 0\)

Hoặc \(x = 0\), \(x = -\frac{1}{2}\) , \(x = \frac{10}{3}\) 

Vậy phương trình có 3 nghiệm.

loigiaihay.com

$$ \Leftrightarrow {x_1} =  - {1 \over {0,6}} =  - {5 \over 3}$$

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan