Bài 37 trang 56 sgk toán 9 tập 2


Giải phương trình trùng phương:

37. Giải phương trình trùng phương:

a) 9x4 – 10x2 + 1 = 0;                     b) 5x4 + 2x2 – 16 = 10 – x2;

c) 0,3x4 + 1,8x2 + 1,5 = 0;              d) 2x2 + 1 =  – 4

Bài giải:

a) 9x4 – 10x2 + 1 = 0. Đặt t = x2 ≥ 0, ta có: 9t2 – 10t + 1 = 0.

Vì a + b + c = 9 – 10 + 1 = 0 nên t1 = 1, t2 =

Suy ra: x1 = -1, x2 = 1, x3 = , x4 =

b) 5x4 + 2x2 – 16 = 10 – x2 ⇔ 5x4 + 3x2 – 26 = 0.

Đặt t = x2 ≥ 0, ta có: 5t2 + 3t -26 = 0

∆ = 9 + 4 . 5 . 26 = 529 = 232; t1 = 2, t2 = -2,6 (loại). Do đó: x1 = √2, x2 = -√2

c) 0,3x4 + 1,8x2 + 1,5 = 0 ⇔ x4 + 6x2 + 5 = 0. Đặt t = x2 ≥ 0, ta có:

t2 + 6t + 5 = 0, t1 = -1 (loại), t2 = -5 (loại)

Phương trình vô nghiệm,

Chú ý:  Cũng có thể nhẫn xét rằng vế trái x4 + 6x2 + 5 ≥ 5, còn vế phải bằng 0. Vậy phương trình vô nghiệm.

d) 2x2 + 1 =  – 4 ⇔ 2x2 + 5 -  = 0. Điều kiện x ≠ 0

2x4 + 5x2 – 1 = 0. Đặt t = x2 ≥ 0, ta có:

2t2 + 5t – 1 = 0; ∆ = 25 + 8 = 33,  t1 = , t2 (loại)

Do đó x1 = , x2 =

>>>>> Bí kíp học tốt các môn lớp 9 2017 bởi các Thầy Cô uy tín, nổi tiếng học hiệu quả, dễ hiểu

 

Bài viết liên quan