Tuyensinh247.com giảm giá 50% chỉ duy nhất 1 ngày 20/11 - KM lớn nhất 2017
Xem ngay

Bắt đầu sau: 08:36:49

Bài 1 trang 77 sách giáo khoa hình học lớp 11


Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng ằm trong một mặt phẳng.

Bài 1. Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.

a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\)

b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\)

c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau

Lời giải

a) Trong \((ABCD)\) : Gọi \(I=AC ∩ BD \), Trong \(( ABEF)\): Gọi \(J=AE ∩ BF \)

\(\Rightarrow (ACE) ∩ (BDF) = IJ\).

Tương tự \((BCE) ∩ ( ADF) = GH\)

b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\), \(N  \in AM\) và \(N \in GH\subset (BCE)\)

Do đó: \(N=AM\cap(BCE)\)

c) Chứng minh bằng phương pháp phản chứng.

Giả sử \(AC\) và \(BE\) cùng nằm trong một mặt phẳng, lập luận dẫn tới \((ABCD) ≡ (ABEF)\) hay chúng cùng nằm trong một mặt phẳng (trái với giả thiết)

Do đó: \(AC\) và \(BF\) không cắt nhau.

loigiaihay.com

                                                                                                       

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu