Bài 1 trang 43 sách sgk giải tích 12

Bình chọn:
4.8 trên 20 phiếu

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:

Bài 1. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:

a) \(y{\rm{ }} = {\rm{ }}2{\rm{ }} + {\rm{ }}3x{\rm{ }}-{\rm{ }}{x^3}\) ;             b) \(y{\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}4{x^2} + {\rm{ }}4x\);

c) \(y{\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}{x^2} + {\rm{ }}9x\) ;            d) \(y{\rm{ }} = {\rm{ }}-2{x^3} + {\rm{ }}5\) ;

Giải:

Câu a:

Xét hàm số \(y{\rm{ }} = {\rm{ }}2{\rm{ }} + {\rm{ }}3x{\rm{ }}-{\rm{ }}{x^3}\)

Tập xác định: \(D=\mathbb{R}.\)

Sự biến thiên:

Đạo hàm: \(y' = 3- 3x^2\) .

Ta có: \(y' = 0 ⇔ x = ± 1\) .

Vậy hàm số đồng biến trên các khoảng \((-1;1)\), nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right).\)

Cực trị: Hàm số đạt cực đại tại \(x=1\), giá trị cực đại

\(y\)=\(y(1)=4\), đạt cực tiểu tại \(x=-1\) và

\(y\)CT=\(y(-1)=0\).

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = - \infty\)

Bảng biến thiên:

         BBT câu a bài 1 trang 43 SGK Giải tích lớp 12

Đồ thị cắt trục \(Ox\) tại các điểm \((2;0)\) và \((-1;0)\), cắt \(Oy\) tại điểm \((0;2)\).

Đồ thị:

Ta có: \(y''=6x\); \(y''=0 ⇔ x=0\). Với \(x=0\) ta có \(y=2\). Vậy đồ thị hàm số nhận điểm \(I(0;2)\) làm tâm đối xứng.

Nhận thấy, nhánh bên trái vẫn còn thiếu một điểm để vẽ đồ thị, dựa vào tính đối xứng ta chọn điểm của hoành độ \(x=-2\) suy ra \(y=4\).

Đồ thị câu a bài 1 trang 43 SGK Giải tích lớp 12

Câu b:

Xét hàm số \(y{\rm{ }} = {\rm{ }}{x^3} + {\rm{ }}4{x^2} + {\rm{ }}4x\)

Tập xác định: \(D=\mathbb{R}.\)

Sự biến thiên:

Đạo hàm: \(y' = 3x^2+ 8x + 4\).

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 2\\ x = - \frac{2}{3} \end{array} \right.\)

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - \frac{2}{3}; + \infty } \right)\) và nghịch biến trên \(\left( { - 2; - \frac{2}{3}} \right).\)

Cực trị:

Hàm số đạt cực đại tại \(x=-2\), giá trị cực đại \(y\)cđ = \(y(-2) = 0\).

Hàm số đạt cực tiểu tại \(x=-\frac{2}{3}\), giá trị cực tiểu \(y_{ct}=y\left ( -\frac{2}{3} \right )=-\frac{32}{27}.\)

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty\).

Bảng biến thiên:

Bảng biến thiên câu b bài 1 trang 43 SGK Giải tích lớp 12

Đồ thị hàm số cắt trục \(Oy\) tại điểm \((0;0)\), cắt trục \(Ox\) tại điểm có hoành độ là nghiệm của phương trình: \({x^3} + 4{x^2} + 4x = 0⇔ x=0\) hoặc \(x=-2\) nên tọa độ các giao điểm là \((0;0)\) và \((-2;0)\).

Đồ thị hàm số:

Tâm đối xứng của đồ thị hàm số: \(y''=6x+8;\)\(y''=0\Leftrightarrow x=-\frac{4}{3}\Rightarrow y=-\frac{16}{27}.\) 

Đồ thị câu b bài 1 trang 43 SGK Giải tích lớp 12

Câu c:

Xét hàm số \(\small y = x^3 + x^2+ 9x\)

Tập xác định: \(D=\mathbb{R}.\)

Sự biến thiên:

Đạo hàm: \(y' = 3x^2+ 2x + 9 > 0, ∀x\).

Vậy hàm số luôn đồng biến trên \(\mathbb{R}\) và không có cực trị.

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty\).

Bảng biến thiên :

BBT câu c bài 1 trang 43 SGK Giải tích lớp 12

Đồ thị:

Đồ thị hàm số cắt trục \(Ox\) tại điểm \((0;0)\), cắt trục \(Oy\) tại điểm \((0;0)\).

Đồ thị hàm số có tâm đối xứng là điểm có hoành độ là nghiệm của phương trình \(y''=0 ⇔ 6x+2=0 ⇔\) \(x=-\frac{1}{3}.\) Suy ra tọa độ tâm đối xứng là: \(I\left ( -\frac{1}{3};-\frac{79}{27} \right ).\)

Lúc này ta vẫn chưa có đủ điểm để vẽ đồ thị hàm số, ta cần lấy thêm hai điểm có hoành độ cách đều hoành độ \(x_1\) và \(x_2\) sao cho \(\left| {{x_1} - \left( { - \frac{1}{3}} \right)} \right| = \left| {{x_2} - \left( { - \frac{1}{3}} \right)} \right|\), khi đó hai điểm này sẽ đối xứng nhau qua điểm uốn. Ta chọn các điểm \((-1;-9)\) và \(\left ( \frac{1}{2};\frac{39}{8} \right ).\)

Đồ thị câu c bài 1 trang 43 SGK Giải tích lớp 12

Câu d:

Xét hàm số \(y=-2x^3+5\)

Tập xác định: \(D=\mathbb{R}.\)

Sự biến thiên:

Đạo hàm: \(y' = -6x^2≤ 0, ∀x\).

Vậy hàm số luôn nghịch biến trên \(\mathbb R\).

Hàm số không có cực trị.

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = - \infty\)

Bảng biến thiên:

Bảng biến thiên câu d bài 1 trang 43 SGK Giải tích lớp 12

 

Đồ thị:

Tính đối xứng: \(y''=-12x; y''=0 ⇔ x=0\). Vậy đồ thị hàm số nhận điểm uốn \(I(0;5)\) làm tâm đối xứng.

Đồ thị hàm số cắt trục \(Oy\) tại điểm \((0;5)\), đồ thị cắt trục \(Ox\) tại điểm \(\left( {\sqrt[3]{{\frac{5}{2}}};0} \right).\) 

Đồ thị câu d bài 1 trang 43 SGK Giải tích lớp 12

 Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan