Bài 9 trang 44 sách sgk giải tích 12


Cho hàm số

Bài 9. Cho hàm số \(y=\frac{(m+1)x-2m+1}{x-1}\) (m là tham số) có đồ thị là \((G)\).

a) Xác định \(m\) để đồ thị \((G)\) đi qua điểm \((0 ; -1)\).

b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với \(m\) tìm được.

c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.

Hướng dẫn giải:

a) \((0 ; -1) ∈ (G) ⇔\)\(-1=\frac{(m+1)\cdot 0-2m+1}{0-1}\Leftrightarrow m=0.\)

b) \(m = 0\) ta được hàm số \(y=\frac{x+1}{x-1}\)  (G0).

Tập xác định: \(D=\mathbb R \backslash {\rm{\{ }}1\}\)

* Sự biến thiên: 

\(y' = {{ - 2} \over {{{(x - 1)}^2}}} < 0\forall x \in D\)

- Hàm số nghịch biến trên khoảng: \((-\infty;1)\) và \((1;+\infty)\).

- Cực trị:

    Hàm số không có cực trị.

- Tiệm cận:

    \(\eqalign{
& \mathop {\lim y}\limits_{x \to \pm \infty } = 1 \cr
& \mathop {\lim y}\limits_{x \to {1^ - }} = - \infty \cr
& \mathop {\lim y}\limits_{x \to {1^ + }} = + \infty \cr} \)

Tiệm cận đứng là: \(x=1\), tiệm cận ngang là: \(y=1\)

- Bảng biến thiên:

* Đồ thị:

Đồ thị hàm số giao trục \(Ox\) tại \((-1;0)\), trục \(Oy\) tại \((0;-1)\)

Đồ thị hàm số nhận \(I(1;1)\) làm tâm đối xứng.

         

c) (G0) cắt trục tung tại \(M(0 ; -1)\). 

\(y'=\frac{-2}{(x-1)^{2}}\Rightarrow y'(0) = -2\).

Phương trình tiếp tuyến của (G0) tại \(M\) là : \(y - (-1) = y'(0)(x - 0) ⇔ y= -2x - 1\).

loigiaihay.com

                                 

     

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu