Bài 3 trang 43 sách sgk giải tích 12

Bình chọn:
4.8 trên 15 phiếu

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số phân thức:

Bài 3. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số phân thức:

a) \({{x + 3} \over {x - 1}}\) ,

b) \({{1 - 2{\rm{x}}} \over {2{\rm{x}} - 4}}\) ,

c) \({{ - x + 2} \over {2{\rm{x}} + 1}}\)

Giải:

a) Tập xác định : \(\mathbb R{\rm{\backslash \{ }}1\}\);  

* Sự biến thiên:

\(y' = {{ - 4} \over {{{(x - 1)}^2}}} < 0,\forall x \ne 1\) ;

- Hàm số nghịch biến trên khoảng: \((-\infty;1)\) và \((1;+\infty)\).

- Cực trị:

     Hàm số không có cực trị.

- Tiệm cận:

\(\mathop {\lim y}\limits_{x \to {1^ - }}  =  - \infty \), \(\mathop {\lim y}\limits_{x \to {1^ + }}  =  +\infty\)

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  = 1\)

Do đó, tiệm cận đứng là: \(x = 1\); tiệm cận ngang là: \(y = 1\).

Bảng biến thiên: 

* Đồ thị:

Đồ thị nhận điểm \(I(1;1)\) làm tâm đối xứng.

Đồ thị giao trục tung tại:\((0;-3)\), trục hoành tại \((-3;0)\)

     

             

 

 

 

 

 

 

 

 

 

b) Tập xác định : \(\mathbb R \backslash {\rm{\{ }}2\} \);    

* Sự biến thiên:

\(y' = {6 \over {{{\left( {2{\rm{x}} - 4} \right)}^2}}} > 0,\forall x \ne 2\)

- Hàm số đồng biến trên khoảng: \((-\infty;2)\) và \((2;+\infty)\)

- Cực trị: 

  Hàm số không có cực trị.

- Tiệm cận:

\(\mathop {\lim y}\limits_{x \to {2^ - }}  =  + \infty \), \(\mathop {\lim y}\limits_{x \to {2^ + }}  =  - \infty \), \(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  - 1\)

Do đó, tiệm cận đứng là: \(x = 2\); tiệm cận ngang là:\( y = -1\).

Bảng biến thiên :

* Đồ thị:

Đồ thị nhận điểm \(I(2;-1)\) lầm tâm đối xứng.

Đồ thị giao trục tung tại: \(\left( {0; - {1 \over 4}} \right)\), trục hoành tại: \(\left( {{1 \over 2};0} \right)\)

c) Tập xác định : \(R\backslash \left\{ { - {1 \over 2}} \right\}\);

Sự biến thiên:

\(y' = {{ - 5} \over {{{\left( {2{\rm{x}} + 1} \right)}^2}}} < 0,\forall x \ne  - {1 \over 2}\)

- Hàm số nghịch biến trên khoảng: \((-\infty;{-1\over 2})\) và \(({-1\over 2};+\infty)\)

- Cực trị:

Hàm số không có cực trị.

- Tiệm cận:

\(\mathop {\lim y}\limits_{x \to  - {{{1 \over 2}}^ - }}  =  - \infty \), \(\mathop {\lim y}\limits_{x \to  - {{{1 \over 2}}^ + }}  =  + \infty \), \(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  - {1 \over 2}\)

Do đó, tiệm cận đứng là: \(x =  - {1 \over 2}\); tiệm cận ngang là: \(y =  - {1 \over 2}\).

Bảng biến thiên :

* Đồ thị    

Đồ thị nhận điểm \(I( - {1 \over 2}; - {1 \over 2})\) làm tâm đối xứng.

Đồ thị giao \(Ox\) tại: \((2;0)\), \(Oy\) tại: \((0;2)\)

       

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan