Bài tập 7 - Trang 80 - SGK Hình học 12

Bình chọn:
3.8 trên 12 phiếu

Lập phương trình mặt phẳng ( α) đi qua hai điểm A( 1; 0 ; 1), B(5 ; 2 ; 3) và vuông góc với mặt phẳng: 2x - y + z - 7 = 0.

Bài 7. Lập phương trình mặt phẳng \(( α)\) đi qua hai điểm \(A( 1; 0 ; 1), B(5 ; 2 ; 3)\) và vuông góc với mặt phẳng: \(2x - y + z - 7 = 0\). 

Giải:

Xét \(\overrightarrow{n} = (2 ; 2 ; 1) \bot (β)\). Do mặt phẳng \(( α) ⊥ (β)\) nên \(\overrightarrow{n}\) là vectơ song song hay nằm trên  \(( α)\). Vectơ \(\overrightarrow{AB}\) có giá nằm trên \(( α)\).

Vì \(\overrightarrow{n}\) và \(\overrightarrow{AB}\) không cùng phương nên \(\overrightarrow{m}=\left [\overrightarrow{n},\overrightarrow{AB} \right ]= (4 ; 0 ; -8)\) là vectơ pháp tuyến của mặt phẳng \(( α)\). Mặt phẳng \(( α)\) qua \(A(1 ; 0 ; 1)\) và vuông góc với \(\overrightarrow{m}\) có phương trình :

       \(4(x - 1) + 0.(y - 0) - 8(z - 1) = 0\).

 hay \(x - 2z + 1 = 0\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan