Bài 9 trang 81 SGK Hình học 12

Bình chọn:
3.2 trên 6 phiếu

Giải bài 9 trang 81 SGK Hình học 12 . Tính khoảng cách từ điểm A(2 ; 4 ; -3) lần lượt đến các mặt phẳng.

Đề bài

Tính khoảng cách từ điểm \(A(2 ; 4 ; -3)\) lần lượt đến các mặt phẳng sau:

a) \(2x - y + 2z - 9 = 0\) ;

b) \(12x - 5z + 5 = 0\) ;

c) \(x = 0\).-

Phương pháp giải - Xem chi tiết

Cho điểm \(M(x_0;y_0;z_0)\) và mặt phẳng \((P): \, ax+by+cz+d=0.\) Khi đó khoảng cách từ điểm \(M\) đến mặt phẳng \((P)\) được tính bởi công thức: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}.\)

Lời giải chi tiết

a) \((P): \, 2x - y + 2z - 9 = 0\) 

   \(d(A,(P))=\frac{|2.2-4+2.(-3)-9)}{\sqrt{4+1+4}}=\frac{15}{3}=5\).

b) \( (Q): \, 12x - 5z + 5 = 0\)

  \(d(A,(Q))=\frac{|12.2-5.(-3)+5)}{\sqrt{144+25}}=\frac{44}{13}.\)

c) \( (R): \, x = 0\)

   \(d(A,(R)) = 2\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan