Bài 4 trang 114 SGK Hình học 11


Cho hai mặt phẳng

Bài 4. Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ một mặt phẳng \((P)\) vuông góc với \((\alpha)\) và \((\beta)\). Nếu \((\alpha)\) song song với \((\beta)\) thì kết quả trên sẽ thay đổi như thế nào?

Giải

  Gọi \(a=(\alpha)\cap (\beta)\). Mặt phẳng \((P)\) đi qua \(M\) và vuông góc với \(a\).

Vì \(a\subset (\alpha)\) nên \((P)\bot (\alpha)\), \(a\subset (\beta)\) nên \((P)\bot(\beta)\)

Như vậy qua \(M\) có mặt phẳng \((P)\) vuông góc với  \((\alpha)\) và \((\beta)\).

Ngược lại: Nếu có \((P)\) đi qua \(M\) và vuông góc với  \((\alpha)\) và \((\beta)\) thì \((P)\bot a\). Do tính duy nhất của mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước nên \((P)\) duy nhất.

  Nếu  \((\alpha)//(\beta)\) gọi \(d\) là đường thẳng đi qua \(M\) và vuông góc với \((\alpha)\) khi đó ta có \(d\bot (\beta)\). Như vậy mọi mặt phẳng chứa \(d\) đều vuông góc với  \((\alpha)\) và \((\beta)\). Do đó khi  \((\alpha)//(\beta)\) thì có vô số mặt phẳng \((P)\) đi qua \(M\) và vuông góc với  \((\alpha)\) và \((\beta)\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu