Bài 11 trang 114 sgk Hình học 11


Cho hình chóp S.ABCD có đáy ABCD là một hình thoi tâm I cạnh a...

Bài 11. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi tâm \(I\) cạnh \(a\) và có góc \(A\) bằng \(60^{0},\) cạnh \(SC=\frac{a\sqrt{6}}{2}\) và \(SC\) vuông góc với mặt phẳng \((ABCD)\).

a) Chứng minh mặt phẳng \((SBD)\) vuông góc với mặt phẳng \((SAC)\). 

b) Trong tam giác \(SCA\) kẻ \(IK\) vuông góc với mặt phẳng \((SAC)\). Hãy tính độ dài \(IK\)

c) Chứng minh \(\widehat{BKD}=90^{0}\) và từ đó suy ra mặt phẳng \((SAB)\) vuông góc với mặt phẳng \((SAD)\).

Giải

(H.3.50) 

a) \(SC\) vuông góc với mặt phẳng \((ABCD)\) suy ra \(SC\bot BD\)         (1)

\(ABCD\) là hình thoi nên \(AC\bot BD\)      (2)

Từ (1) và (2) suy ra \(BD ⊥ (SAC)\)

\(BD\subset (SBD)\Rightarrow (SBD) ⊥ (SAC)\).

b) Xét tam giác vuông \(ABI\) có: \(AI=AB.\cos 30^0={{a\sqrt 3 } \over 2}\Rightarrow AC = 2AI = a\sqrt 3 \)

 Xét tam giác vuông \(SAC\) có: \(SA=\sqrt {A{C^2} + S{C^2}}  = \sqrt {3{a^2} + {{6{a^2}} \over 4}} =\frac{3a}{\sqrt{2}}.\) 

Hai tam giác vuông \(SCA\) và \(IKA\) đồng dạng (g.g) nên \(\frac{IK}{SC}=\frac{AI}{AS}\Rightarrow IK=\frac{AI.SC}{AS}=\frac{a}{2}.\)

c) \(IK = IB = ID = \frac{a}{2}\) nên tam giác \(BKD\) vuông tại \(K\). Vậy \(\widehat{BKD}=90^{0}.\)

\(SA\) cùng vuông góc với \(BD\) và \(IK\) nên \(SA ⊥ (DKB)\); \(DK\) và \(BK\) cùng vuông góc với \(SA\). Vậy góc \(\widehat {BKD}\) là góc giữa \((SAD)\) và \((SAB)\) và \(\widehat{BKD}=90^{0}\) \(\Rightarrow  (SAD) ⊥ (SAB)\).   

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu