Bài 3 trang 113 SGK Hình học 11


Trong mặt phẳng

Bài 3. Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:

a) \(\widehat {ABD}\) là góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\);

b) Mặt phẳng \((ABD)\) vuông góc với mặt phẳng \((BCD)\);

c) \(HK//BC\) với \(H\) và \(K\) lần lượt là giao điểm của \(DB\) và \(DC\) với mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(DB\).

Giải

a) Tam giác \(ABC\) vuông tại \(B\) nên \(AB\bot BC\)    (1)

\(AD\) vuông góc với \((\alpha)\) nên \(AD\bot BC\)                (2)

Từ (1) và (2) suy ra \(BC\bot (ABD)\) suy ra \(BC\bot BD\)

\(\left. \matrix{
(ABC) \cap (DBC) = BC \hfill \cr
BD \bot BC \hfill \cr
AB \bot BC \hfill \cr} \right\} \Rightarrow \) góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\) là góc  \(\widehat {ABD}\)

b) 

\(\left. \matrix{
BC \bot (ABD) \hfill \cr
BC \subset (BCD) \hfill \cr} \right\} \Rightarrow (ABD) \bot (BCD)\)

c) 

 Mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(DB\) nên \(HK\bot BC\)

Trong \((BCD)\) có: \(HK\bot BC\) và \(BC\bot BD\) nên suy ra \(HK// BC\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu