Bài 31 trang 54 sgk Toán 9 tập 2

Bình chọn:
4.3 trên 8 phiếu

Tính nhẩm nghiệm của các phương trình:

Bài 31. Tính nhẩm nghiệm của các phương trình:

a) \(1,5{x^2}-{\rm{ }}1,6x{\rm{ }} + {\rm{ }}0,1{\rm{ }} = {\rm{ }}0\);          

b) \(\sqrt 3 {x^2}-{\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 3 } \right)x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\)

c) \(\left( {2{\rm{ }} - {\rm{ }}\sqrt 3 } \right){x^2} + {\rm{ }}2\sqrt 3 x{\rm{ }}-{\rm{ }}\left( {2{\rm{ }} + {\rm{ }}\sqrt 3 } \right){\rm{ }} = {\rm{ }}0\);

d) \(\left( {m{\rm{ }}-{\rm{ }}1} \right){x^2}-{\rm{ }}\left( {2m{\rm{ }} + {\rm{ }}3} \right)x{\rm{ }} + {\rm{ }}m{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\) với \(m ≠ 1\).
Bài giải:

a) Phương trình \(1,5{x^2}-{\rm{ }}1,6x{\rm{ }} + {\rm{ }}0,1{\rm{ }} = {\rm{ }}0\)

Có \(a + b + c = 1,5 – 1,6 + 0,1 = 0\) nên \({x_1} = 1;{x_2} = {\rm{ }}{{0,1} \over {15}} = {1 \over {150}}\)

b) Phương trình \(\sqrt 3 {x^2}-{\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 3 } \right)x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\)

Có \(a – b + c = \sqrt{3} + (1 - \sqrt{3}) + (-1) = 0\) nên \({x_1} =  - 1,{x_2} =  - {{ - 1} \over {\sqrt 3 }} = {\rm{ }}{{\sqrt 3 } \over 3}\)

c) \(\left( {2{\rm{ }} - {\rm{ }}\sqrt 3 } \right){x^2} + {\rm{ }}2\sqrt 3 x{\rm{ }}-{\rm{ }}\left( {2{\rm{ }} + {\rm{ }}\sqrt 3 } \right){\rm{ }} = {\rm{ }}0\)

Có \(a + b + c = 2 - \sqrt{3} + 2\sqrt{3} – (2 + \sqrt{3}) = 0\)

Nên \({x_1} = 1,{x_2} = {\rm{ }}{{ - (2 + \sqrt 3 )} \over {2 - \sqrt 3 }} =  - {(2 + \sqrt 3 )^2} =  - 7 - 4\sqrt 3 \)

d) \(\left( {m{\rm{ }}-{\rm{ }}1} \right){x^2}-{\rm{ }}\left( {2m{\rm{ }} + {\rm{ }}3} \right)x{\rm{ }} + {\rm{ }}m{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\)

Có \(a + b + c = m – 1 – (2m + 3) + m + 4 = 0\)

Nên \({x_1} = 1,{x_2} = {\rm{ }}{{m + 4} \over {m - 1}}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan