Bài 33 trang 54 SGK Toán 9 tập 2

Bình chọn:
4.4 trên 31 phiếu

Giải bài 33 trang 54 SGK Toán 9 tập 2. Chứng tỏ rằng nếu phương trình

Đề bài

Chứng tỏ rằng nếu phương trình \(a{x^2} + bx + c = 0\) có nghiệm là \({x_1}\) và \({x_2}\) thì tam thức  \(a{x^2} + bx + c \) phân tích được thành nhân tử như sau:

\(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).

Áp dụng. Phân tích đa thức thành nhân tử.

a)\(2{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}3\)

b) \({\rm{ }}3{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}2\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức nghiệm, công thức nghiệm của phương trình bậc 2, hoặc các phương pháp tìm nghiệm nhanh từ các hệ số a, b, c để tìm nghiệm của phương trình từ đó thay vào công thức \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).

Lời giải chi tiết

Biến đổi vế phải:

\(a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2}){\rm{ }} \)

\(= a\left( {{x^2} - x{x_2} - x{x_1} + {x_1}{x_2}} \right) \)

\(= {\rm{ }}a{x^2}-{\rm{ }}a({x_1} + {\rm{ }}{x_2})x{\rm{ }} + {\rm{ }}a{x_1}{x_2}\)

\( = a{x^2} - a\left( { - {b \over a}} \right)x + a{c \over a} = a{x^2} + bx + c\)

Vậy phương trình \(a{x^2} + bx + c = 0\) có nghiệm là \({x_1},{x_2}\) thì:

            \(a{x^2} + {\rm{ }}bx{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a(x{\rm{ }}-{\rm{ }}{x_1})(x{\rm{ }}-{\rm{ }}{x_2})\).      

Áp dụng:

a) Phương trình \(2{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\) có \(a + b + c = 2 – 5 + 3 = 0\) nên có hai nghiệm là \({x_1} = 1,{x_2} = {\rm{ }}{3 \over 2}\) nên:

\(2{x^2}{\rm{  + }}5x + 3 = 2(x{\rm{ - }}1)(x - {\rm{ }}{3 \over 2}) = (x - 1)(2x - 3)\)

b) Phương trình  \({\rm{ }}3{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}2\) có \(a = 3, b = 8, b’ = 4, c = 2\).

Nên \(\Delta' {\rm{ }} = {\rm{ }}{4^2}-{\rm{ }}3{\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }}10\), có hai nghiệm là:

\({x_1}\) = \(\frac{-4 - \sqrt{10}}{3}\), \({x_2}\)= \(\frac{-4 + \sqrt{10}}{3}\)

nên: \(3{x^2} + 8x + 2 = 3(x - {\rm{ }}{{ - 4 - \sqrt {10} } \over 3})(x - {\rm{ }}{{ - 4 + \sqrt {10} } \over 3})\)

\( = 3(x + {\rm{ }}{{4 + \sqrt {10} } \over 3})(x + {\rm{ }}{{4 - \sqrt {10} } \over 3})\)


loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan