Lý thuyết tích vô hướng của hai vectơ


1. Định nghĩa

1.Định nghĩa

Cho hai vectơ \(\vec{a}\) và \(\vec{b}\)  khác vectơ \(\vec{0}\). Tích vô hướng của \(\vec{a}\) và \(\vec{b}\) là một số được ký hiệu là \(\vec{a}\).\(\vec{b}\), được xác định bởi công thức sau :

\(\vec{a} .\vec{b} = |\vec{a}|.|\vec{b}|cos(\vec{a}, \vec{b})\) 

2. Các tính chất của tích vô hướng

Người ta chứng minh được các tính chất sau đây của tích vô hướng :

Với ba vectơ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) bất kì và mọi số \(k\) ta có :

\(\vec{a}\) .\(\vec{b}\) =  \(\vec{b}\).\(\vec{a}\) (tính chất giao hoán)

\(\vec{a}\).( \(\vec{b}\) + \(\vec{c}\)) =  \(\vec{a}\). \(\vec{b}\) + \(\vec{a}\). \(\vec{c}\) ( tính chất phân phối)

\((k.\vec{a}\)).\(\vec{b}\) =  \(k(\vec{a}\), \(\vec{b}\)) = \(\vec{a}\)\(.(k\vec{b}\))

3. Biểu thức tọa độ của tích vô hướng

Trên mặt phẳng tọa độ \((0; \vec{i}; \vec{j})\), cho hai vec tơ \(\overrightarrow a =({a_1};{a_2})\), \(\overrightarrow b  = ({b_1};{b_2})\). Khi đó tích vô hướng \(\vec{a}\) và \(\vec{b}\) là:

\(\overrightarrow a .\overrightarrow b  = {a_1}{b_1} + {a_2}{b_2}\)

 

 Nhận xét: Hai vectơ \(\overrightarrow a =({a_1};{a_2})\), \(\overrightarrow b  = ({b_1};{b_2})\) khác vectơ \(\vec{0}\) vuông góc với nhau khi và chỉ khi:

$${a_1}{b_1} + {a_2}{b_2} = 0$$       

4. Ứng dụng

a) Độ dài của vectơ: Độ dài của vec tơ  \(\overrightarrow a =({a_1};{a_2})\) được tính theo công thức:


\(\vec{a} = \sqrt{a_{1}^{2}+ {a_{2}}^{2}}\)

b) Góc giữa hai vec tơ: Từ định nghĩa tích vô hướng của hai vec tơ ta suy ra nếu \(\overrightarrow a =({a_1};{a_2})\), \(\overrightarrow b  = ({b_1};{b_2})\) khác vectơ \(\vec{0}\) thì ta có:

\(\cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a|.|\vec{b}}|} = \frac{{a_{1}.b_{1}+ a_{2}.b_{2}}}{\sqrt{{a_{1}}^{2}+{a_{2}}^{2}}.\sqrt{{b_{1}}^{2}+{b_{2}}^{2}}}\)

c) Khoảng cách giữa hai điểm: Khoảng cách giữa hai điểm \(A({x_A};{y_A}),B({x_B};{y_B})\) được tính theo công thức :

\(AB = \sqrt{({x_{B}-x _{A}})^{2}+({y_{B}-y_{A})}^{2}}\)

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 10, mọi lúc, mọi nơi cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu