Bài 6 trang 39 sách giáo khoa hình học lớp 12


Bài 6. Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh 2a. Tính diện tích xung quanh và thể tích của hình nón đó.

Bài 6. Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh \(2a\). Tính diện tích xung quanh và thể tích của hình nón đó.

Giải:

Theo đề bài, đường kính của hình tròn đáy của nón bằng \(2a\). Vậy bán kính \(R = a\).

Chiều cao của hình nón bằng chiều cao của tam giác đều, nên \(h = a\sqrt3\) và đường sinh \(l = 2a\).

Vậy diện tích xung quanh của hình nón là:

                            \(S_{xq} = πRl = 2a^2π\)

Thể tích khối nón là:

                            \(V = {1 \over 3}\pi {r^2}.h = {1 \over 3}\pi {a^2}.a\sqrt 3  = {{\pi {a^3}\sqrt 3 } \over 3}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu