Bài 8 trang 40 sách giáo khoa hình học lớp 12

Bình chọn:
3.8 trên 4 phiếu

Bài 8. Một hình trụ có hai đáy là hai hình tròn (O;r) và (O';r). Khoảng cách giữa hai đáy là OO' = r.√3. Một hình nón có đỉnh là O' và có đáy là hình tròn (O;r).

Bài 8. Một hình trụ có hai đáy là hai hình tròn \((O;r)\) và \((O';r)\). Khoảng cách giữa hai đáy là \(OO' = r.\sqrt3\). Một hình nón có đỉnh là \(O'\) và có đáy là hình tròn \((O;r)\).

a) Gọi \(S_1\) là diện tích xung quanh của hình trụ và \(S_2\) là diện tích xung quanh của hình nón, hãy tính tỷ số \({{{S_1}} \over {{S_2}}}\).

b) Mặt xung quanh của hình nónchia khối trụ thành hai phần, hãy tính tỷ số thể tích hai phần đó.

Giải:

Ta có \(l = h = r\sqrt3\)

Diện tích xung quanh hình trụ là:

\(S_1 = 2πr.l = 2πr.r\sqrt3 = 2\sqrt3 πr^2\)

\(O'M\) là một đường sinh của hình nón ta có: 

\(l' = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{r^2} + {r^2}}  = 2r\)

Diện tích xung quanh hình nón là:

\(S_2 = πrl'= π.r.2r = 2πr^2\)

Vậy: \({{{S_1}} \over {{S_2}}} = {{2\sqrt 3 \pi {r^2}} \over {2\pi {r^2}}} = \sqrt 3 \)

b) Khối trụ và khối nón có cùng đáy và cùng chiều cao nên thể tích khối trụ bằng ba lần thể tích khối nón. Gọi \(V_1\) là thể tích khối nón và \(V_3\) là thể tích phần còn lại của khối trụ, ta suy ra: \({{{V_1}} \over {{V_2}}} = {1 \over 2}\)

loigiaihay.com

 

Đã có lời giải Sách bài tập - Toán lớp 12 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2018, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan